36
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Song variation and habitat structure in the Golden Bowerbird

&
Pages 263-272 | Received 05 Oct 2005, Accepted 07 Sep 2006, Published online: 22 Dec 2016
 

Abstract

Variation is a commonly reported feature of the signals of many animal species. One hypothesis that seeks to explain this variation, the Acoustic Adaptation Hypothesis, suggests that selection should shape the structure of long-distance signals to maximise their transmission through different habitats. One prediction of this hypothesis is that signals will be designed such that within local habitats, local dialects will experience less degradation during transmission than will foreign dialects. We tested this prediction as part of a study of geographical variation in the song of the Golden Bowerbird (Prionodura newtoniana). Our aim was to evaluate the significance of local habitat structure in selection for divergent song in this species. We played both local and foreign dialects at four locations and re-recorded the song at 2 m and 50 m distance from the speaker. Song degraded differentially at the four locations, indicating the existence of different acoustic environments. However, songs that exhibited the least degradation did not originate from the locations that induced the greatest degradation. Most significantly, in local habitats, local dialects suffered similar levels of degradation to foreign dialects. These results suggest that local habitat structure has relatively little effect on the design of acoustic signal in the Golden Bowerbird at the individual level. While efficiency of transmission may influence signal design on evolutionary time-frames, conflicting social and ecological pressures probably act to reduce its importance in ecological time-frames.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.