Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 62, 2023 - Issue 3
121
Views
0
CrossRef citations to date
0
Altmetric
Mineral Processing

Numerical and experimental analysis of terminal settling velocity in the presence of magnetic field aligned with gravity for ferro-magnetite particles using coupled CFD+DPM method

, &
Pages 502-510 | Received 03 Feb 2022, Accepted 20 May 2022, Published online: 03 Jun 2022
 

ABSTRACT

Based on the previous investigations, in the presence of a magnetic field aligned with the gravity, the terminal settling velocity (TSV) of magnetic particles is improved compared to that of non-magnetic particles. In this paper, the effects of magnetic fields with intensities of 0.03 and 0.05 T on the TSVs of spherical magnetite particles and steel balls of different sizes were simulated using combined computational fluid dynamics and discrete phase methods (CFD + DPM). Simulations showed that the application of a magnetic field with the mentioned intensities increased the TSVs of the steel balls and the magnetite spherical particles up to 16.16% and 13.88%, respectively. To validate simulation outputs, using synthetic samples and a Magneto-Gravity Settling Device (MGSD) designed and fabricated by the authors, a series of lab settling tests were performed under the same operational conditions as those of simulations. The results of the test work concluded that in the presence of magnetic fields of 0.03 and 0.05 T intensities, steel balls and spherical magnetite particles settled faster by 8.84% and 7.41%, respectively. This shows that, with an acceptable error, CFD + DPM simulation methods can well predict the influence of the magnetic field on the settling behaviour of magnetic particles.

Sur la base des études précédentes, en présence d’un champ magnétique aligné avec la gravité, la vitesse limite de sédimentation (TSV) des particules magnétiques est améliorée par rapport à celle des particules non-magnétiques. Dans cet article, on a simulé les effets de champs magnétiques avec des intensités de 0.03 et 0.05 T sur les TSV de particules de magnétite sphériques et de billes en acier de tailles variées en utilisant les méthodes combinées de mécanique des fluides numérique et de phase discrète (CFD+DPM). Les simulations ont montré que l’application d’un champ magnétique avec les intensités mentionnées augmentait les TSV des billes en acier et des particules de magnétite sphériques jusqu’à 16.16% et 13.88% respectivement. Afin de valider les produits de la simulation, utilisant des échantillons synthétiques et un Dispositif de Sédimentation Magnéto-Gravitaire (MGSD) conçu et fabriqué par les auteurs, on a effectué une série d’essais de sédimentation en laboratoire dans les mêmes conditions opérationnelles que celles des simulations. Les résultats des travaux d’essai ont conclu qu’en présence de champs magnétiques d’intensités de 0.03 et 0.05 T, les billes en acier et les particules de magnétite sphériques sédimentaient plus rapidement par 8.84% et 7.41% respectivement. Ceci montre qu’avec une erreur acceptable, les méthodes de simulation CFD+DPM peuvent bien prédire l’influence du champ magnétique sur le comportement de sédimentation des particules magnétiques.

Disclosure statement

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.