Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 62, 2023 - Issue 3
121
Views
0
CrossRef citations to date
0
Altmetric
Mineral Processing

Numerical and experimental analysis of terminal settling velocity in the presence of magnetic field aligned with gravity for ferro-magnetite particles using coupled CFD+DPM method

, &
Pages 502-510 | Received 03 Feb 2022, Accepted 20 May 2022, Published online: 03 Jun 2022

References

  • Gupta A, Yan DS. Mineral processing design and operation, an introduction. Elsevier Science; 2006. p. 1–2.
  • Wills BA, Finch JA. Will’s mineral processing technology. 8th ed. Hoboken (NJ): Elsevier, Wiley & Sons Inc. capture 4, 98-102 and capture 9:2016;199–204.
  • Usachyov PA, Korytny Y. Magnetic-gravity separation of iron ore. Indian J Eng Mater Sci. 1998;5:1291–1300.
  • Hearn S, Dobbins M. Slon magnetic separator; A new approach for recovering and concentrating iron ore fines. Paper presented at the Canadian Institute of Mining, Metallurgy and Petroleum Conference and Exhibition; 29 April to 2 May 2007; Montreal, Canada.
  • Burt R. Gravity concentration technology. Amsterdam: Elsevier; 1984. p. 605.
  • Burt R. The role of gravity concentration in modern processing plants. Miner Eng. 1999;12(11):1291–1300.
  • Dietrich EW. Settling velocities of natural particles. Water Resource Res. 1982;18:1615–1626.
  • Turton R, Clark NN. An explicit relationship to predict spherical particle terminal velocity. Powder Technol. 1987;53:127–129.
  • Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical and non-spherical particles. Powder Technol. 1989;58(1):63–70.
  • Fei XJ. Settling of particles in suspension-two typical cases in calculating the terminal velocity of nonuniform sediment. J Sediment Res. 1992;3:11–20.
  • Ganser G. A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol. 1993;77(2):143–152.
  • Cheng NS. Simplified terminal velocity formula for sediment particle. J Hydraul Eng. 1997;123:149–152.
  • Brown PP, Lawler DF. Sphere drag and terminal velocity revisited. J Environ Eng. 2003;129:222–231.
  • Qian N, Wan ZH. Theory of sediment transport. Beijing: Science Press; 2003.
  • Gabitto J, Tsouris C. Drag coefficient and settling velocity for particles of cylindrical shape. Powder Technol. 2008;183:314–322.
  • Loth E. Drag of non-spherical solid particles of regular and irregular shape. Powder Technol. 2008;182(3):342–353.
  • Hölzer A, Sommerfeld M. New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 2008;184(3):361–365.
  • Terfous A, Hazzab A, Ghenaim A. Predicting the drag coefficient and terminal velocity of spherical particles. Powder Technol. 2013;239:12–20.
  • Shahi S, Kuru E. An experimental investigation of terminal velocity of natural sands in water using particle image shadowgraph. Powder Technol. 2015;281:184–192.
  • Bagheri G, Bonadonna C. On the drag of freely falling non-spherical particles. Powder Technol. 2016;301:526–544.
  • Wang Y, Zhou L, Wu Y, et al. New simple correlation formula for the drag coefficient of calcareous sand particles of highly irregular shape. Powder Technol. 2017;326:379–392.
  • Song XZ, Xu ZM, Li GS, et al. A new model for predicting drag coefficient and settling velocity of spherical and non-spherical particle in Newtonian fluid. Powder Technol. 2017;321:242–250.
  • Xiaofeng S, Kebo Z, Ye C, et al. Study on the settling velocity of drilling cuttings in the power law fluid. Powder Technol. 2020;362:278–287.
  • Ardekani MN, Asmar LA, Picano F. Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles. Int J Heat Fluid Flow. 2018;71:189–199.
  • Xu A, Shi L, Zhao TS. Thermal effects on the sedimentation behavior of elliptical particles. Int J Heat Mass Transf. 2018;126:753–764.
  • Karimnejad S, Amiri Delouei A, Nazari M. Sedimentation of elliptical particles using immersed boundary–lattice Boltzmann method: A complementary repulsive force model. J Mol Liq. 2018;262:180–193.
  • Decoene A, Martin S, Maury B. Direct simulation of rigid particles in a viscoelastic fluid. J Non Newtonian Fluid Mech. 2018;260:1–25.
  • Liu L, Yang J, Lu H. Numerical simulations on the motion of a heavy sphere in upward Poiseuille flow. Ocean Eng. 2019;172:245–256.
  • Xie Z, Shen Y, Takabatake K. Coarse-grained DEM study of solids sedimentation in water. Powder Technol. 2019;361:21–32.
  • Zhao T, Houlsby GT, Utili S. Investigation of granular batch sedimentation via DEM-CFD coupling. Granular Matter. 2014;16:921–932.
  • Wang Y, Zhou L, Yang Q. Hydro-mechanical analysis of calcareous sand with a new shape-dependent fluid-particle drag model integrated into CFD-DEM coupling program. Powder Technol. 2019;344:108–120.
  • Chen L, Zeng J, Guan C, et al. High gradient magnetic separation in centrifugal field. Miner Eng. 2015;78:122–127. doi:10.1016/j.mineng.2015.04.018.
  • Xiong D. SLon magnetic separator applied to upgrading the iron concentrate. Physical Separation in Science and Engineering. 2003;12(2):63–69.
  • Lin IJ, Krush-Bram M, Rosenhouse G. The beneficiation of minerals by magnetic jigging; part 1. Theoretical aspects. Int J Miner Process. 1997;50:143–159.
  • Lin IJ, Krush-Bram M, Rosenhouse G. The beneficiation of minerals by magnetic jigging; part 2. Identification of the parameters and verification of the mathematical model for the theoretical analysis of the mineral particles motion in the magnetic jig. Int J Miner Process. 1997;54(1):29–44. doi:10.1016/S0301-7516(97)00079-3.
  • Yalcin T. Magnetoflotation; development and laboratory assessment. Int J Miner Process. 1992;34(1–2):119–132.
  • Jujian LBZ. Field characteristic and separation mechanism of a column magnetic separator. Mining Metall Eng. 1997(2):1–3.
  • Ran HY, Liang DY. Producing high grade iron concentrate with magneto-flotation column. 2005.
  • Asli H, Salarirad MM, Dehghani H. The application of combined effect of magnetic and gravity forces to improve the separation efficiency of mineral particles with different magnetic susceptibilities (glass scale). J Sustain Metall. 2021;7(3):1060–1073.
  • Yakhot V, Orszag SA. Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput. 1986;1:3–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.