313
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Swirl on Intermittency Characteristics in Non-Premixed Flames

, , &
Pages 629-659 | Received 18 Feb 2011, Accepted 22 Dec 2011, Published online: 14 May 2012
 

Abstract

Swirl effects on velocity, mixture fraction, and temperature intermittency have been analyzed for turbulent methane flames using large eddy simulation (LES). The LES solves the filtered governing equations on a structured Cartesian grid using a finite volume method, with turbulence and combustion modeling based on the localized dynamic Smagorinsky and the steady laminar flamelet models, respectively. Probability density function (PDF) distributions demonstrate a Gaussian shape closer to the centerline region of the flame and a delta function at the far radial position. However, non-Gaussian PDFs are observed for velocity and mixture fraction on the centerline in a region where center jet precession occurs. Non-Gaussian behavior is also observed for the temperature PDFs close to the centerline region of the flame. Due to the occurrence of recirculation zones, the variation from turbulent to nonturbulent flow is more rapid for the velocity than the mixture fraction and therefore indicates how rapidly turbulence affects the molecular transport in these regions of the flame.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical Research Council (EPSRC) under grant number (EP/E036945/1) on the Modeling and Simulation of Intermittent Flows.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.