87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Domain wall motion and Barkhausen pulses in lithium niobate with tailored regular 2D domain structure

, , &
Pages 40-46 | Received 24 Aug 2022, Accepted 12 Jan 2023, Published online: 07 Mar 2023
 

Abstract

We present the study of domain structure evolution during polarization reversal in lithium niobate crystal with an initial tailored polydomain state representing a matrix of isolated domains arranged in a square lattice. Domain kinetics during switching differs significantly from the initial single domain state. Growing domains elongate in Y crystallographic direction coinciding with the 2D lattice direction. The field dependence of main domain walls follows the activation law. Typical switching current consists of many Barkhausen pulses separated by low current regions. Korcak’s analysis of switching current has demonstrated the Hurst exponent below 0.5, which indicates an anti-persistent character of the process.

Acknowledgments

The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University (reg. no. 2968), which is supported by the Ministry of Science and Higher Education RF (project No. 075-15-2021-677), was used.

Additional information

Funding

This work was supported by the Russian Science Foundation (grant 21-72-10160).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.