87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Domain wall motion and Barkhausen pulses in lithium niobate with tailored regular 2D domain structure

, , &
Pages 40-46 | Received 24 Aug 2022, Accepted 12 Jan 2023, Published online: 07 Mar 2023

References

  • D. S. Hum, and M. M. Fejer, Quasi-phasematching, CR. Phys. 8 (2), 180 (2007). DOI: 10.1016/j.crhy.2006.10.022.
  • R. L. Byer, Quasi-phasematched nonlinear interactions and devices, J. Nonlinear Optic. Phys. Mat. 06 (04), 549 (1997). DOI: 10.1142/S021886359700040X.
  • M. M. Fejer et al., Quasi-phase-matched second harmonic generation: tuning and tolerances, IEEE J. Quantum Electron. 28 (11), 2631 (1992). DOI: 10.1109/3.161322.
  • M. Yamada, M. Saitoh, and H. Ooki, Electric‐field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals, Appl. Phys. Lett. 69 (24), 3659 (1996). DOI: 10.1063/1.117015.
  • R. Batchko et al., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation, Appl. Phys. Lett. 75 (12), 1673 (1999). DOI: 10.1063/1.124787.
  • G. Rosenman et al., Domain broadening in quasi-phase-matched nonlinear optical devices, Appl. Phys. Lett. 73 (7), 865 (1998). DOI: 10.1063/1.121969.
  • A. I. Lobov et al., Shapes of isolated domains and field induced evolution of regular and random 2D domain structures in LiNbO3 and LiTaO3, Ferroelectrics 341 (1), 109 (2006). DOI: 10.1016/j.mseb.2005.02.007.
  • A. A. Esin et al., Superfast domain wall motion in lithium niobate single crystals. Analogy with crystal growth, Appl. Phys. Lett. 114 (19), 192902 (2019). DOI: 10.1063/1.5094688.
  • M. Lines, and A. Glass, Principles and Applications of Ferroelectrics and Related Materials, (Clarendon Press, Oxford, 1979).
  • H. Mueller, Properties of Rochelle salt, Phys. Rev. 47 (2), 175 (1935). DOI: 10.1103/PhysRev.47.175.
  • A. C. Kibblewhite, Noise generation in crystals and in ceramic forms of barium titanate when subjected to electric stress, Proc. IEE 102 (1), 59 (1955). DOI: 10.1049/pi-b-1.1955.0009.
  • A. Chynoweth, Barkhausen pulses in barium titanate, Phys. Rev. 110 (6), 1316 (1958). DOI: 10.1103/PhysRev.110.1316.
  • A. G. Chynoweth, Effect of space charge fields on polarization reversal and the generation of Barkhausen pulses in barium titanate, J. Appl. Phys. 30 (3), 280 (1959). DOI: 10.1063/1.1735152.
  • V. M. Rudyak, The Barkhausen effect, Sov. Phys. Usp. 13 (4), 461 (1971). DOI: 10.1070/PU1971v013n04ABEH004681.
  • V. Y. Shur et al., Barkhausen effect in stepped motion of a plane domain boundary in gadolinium molybdate, Phys. Solid State 41 (2), 269 (1999). DOI: 10.1134/1.1130766.
  • R. C. Miller, Some experiments on the motion of 180° domain walls in BaTiO3, Phys. Rev. 111 (3), 736 (1958). DOI: 10.1103/PhysRev.111.736.
  • R. C. Miller, On the origin of Barkhausen pulses in BaTiO3, J. Phys. Chem. Solids 17 (1-2), 93 (1960). DOI: 10.1016/0022-3697(60)90180-3.
  • B. BŘezina, J. Fousek, and A. Glanc, Barkhausen pulses in BaTiO3 connected with 90° switching processes, Czech. J. Phys. 11 (8), 595 (1961). DOI: 10.1007/BF01689156.
  • V. Y. Shur et al., Barkhausen jumps during domain wall motion in ferroelectrics, Ferroelectrics 267 (1), 347 (2002). DOI: 10.1080/00150190211031.
  • A. R. Akhmatkhanov et al., Analysis of Barkhausen pulse shapes in lithium niobate single crystals, Ferroelectrics 592 (1), 1 (2022). DOI: 10.1080/00150193.2022.2052239.
  • C. Flannigan, C. D. Tan, and J. F. Scott, Electrical studies of Barkhausen switching noise in ferroelectric lead zirconate titanate (PZT) and BaTiO3: critical exponents and temperature-dependence, J. Phys. Condens. Matter 32 (5), 055403 (2020). DOI: 10.1088/1361-648X/ab4d87.
  • E. K. H. Salje, and K. A. Dahmen, Crackling noise in disordered materials, Annu. Rev. Condens. Matter Phys. 5 (1), 233 (2014). DOI: 10.1146/annurev-conmatphys-031113-133838.
  • P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A Gen. Phys. 38 (1), 364 (1988). DOI: 10.1103/PhysRevA.38.364.
  • B. Casals et al., Avalanches from charged domain wall motion in BaTiO3 during ferroelectric switching, APL Mater. 8 (1), 011105 (2020). DOI: 10.1063/1.5128892.
  • J. H. Ro, and M. Cha, Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals, Appl. Phys. Lett. 77 (15), 2391 (2000). DOI: 10.1063/1.1316781.
  • J. Feder, Fractals (Plenum, New York, 1988).
  • J. Russ, Fractal Surfaces (Plenum, New York, 1994).
  • V. Y. Shur et al., Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by vapor transport equilibration, J. Appl. Phys. 111 (1), 014101 (2012). DOI: 10.1063/1.3673601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.