465
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Robust parameter-dependent fault-tolerant control for actuator and sensor faults

&
Pages 1475-1484 | Received 13 Feb 2009, Accepted 23 Mar 2010, Published online: 23 Jun 2010
 

Abstract

In this article, we study a robust fault-tolerant control (FTC) problem for linear systems subject to time-varying actuator and sensor faults. The faults under consideration are loss of effectiveness in actuators and sensors. Based on the estimated faults from a fault detection and isolation scheme, robust parameter-dependent FTC will be designed to stabilise the faulty system under all possible fault scenarios. The synthesis condition of such an FTC control law will be formulated in terms of linear matrix inequalities (LMIs) and can be solved efficiently by semi-definite programming. The proposed FTC approach will be demonstrated on a simple faulty system with different fault levels and fault estimation error bounds.

Acknowledgement

This work was supported in part by NASA under Grant NNX07AC40A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.