169
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Inhibition of NF-κB might enhance the protective role of roflupram on SH-SY5Y cells under amyloid β stimulation via PI3K/AKT/mTOR signaling pathway

, , &
Pages 864-874 | Received 15 May 2019, Accepted 10 Apr 2020, Published online: 07 May 2020
 

Abstract

Alzheimer disease (AD) is a progressive neurodegenerative disease and mostly endanger the health of people older than 65 years. Accumulation of beta amyloid protein (Aβ) is the main characteristic of AD. Roflupram (ROF) could improve the behavior of AD in a mouse model. In this study, we first detected the increased concentration of molecules related to inflammatory response in serum sample of patients with AD. Next, a cell model of nuclear factor kappa B (NF-κB) inhibition and NF-κB overexpression was established in SH-SY5Y cells, Aβ was used to simulate the toxicity to cells. ROF treatment decreased expression of apoptosis-related molecules via inhibition of PI3K/AKT/mTOR signaling pathway, decreased expression of pro-inflammatory factors, and increased expression of key enzymes in the tricarboxylic acid (TCA) cycle was observed in SH-SY5Y cells after ROF treatment. Inhibition of NF-κB could enlarge these trends whereas overexpression of NF-κB could reduce these trends.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.