167
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Inhibition of NF-κB might enhance the protective role of roflupram on SH-SY5Y cells under amyloid β stimulation via PI3K/AKT/mTOR signaling pathway

, , &
Pages 864-874 | Received 15 May 2019, Accepted 10 Apr 2020, Published online: 07 May 2020

References

  • Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59–70.
  • Gupta J, Fatima MT, Islam Z, et al. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int J Biol Macromol. 2019;130:515–526.
  • Gu X, Sun J, Li S, et al. Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol Aging. 2013;34(4):1069–1079.
  • Bonda DJ, Wang X, Perry G, et al. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology. 2010;59(4-5):290–294.
  • You T, Cheng Y, Zhong J, et al. Roflupram, a phosphodiesterase 4 inhibitior, suppresses inflammasome activation through autophagy in microglial cells. ACS Chem Neurosci. 2017;8(11):2381–2392.
  • Ortiz JL, Milara J, Lluch J, et al. Phosphodiesterase-4 inhibition improves corticosteroid insensitivity in pulmonary endothelial cells under oxidative stress. Allergy. 2013;68(1):64–73.
  • Guo H, Cheng Y, Wang C, et al. FFPM, a PDE4 inhibitor, reverses learning and memory deficits in APP/PS1 transgenic mice via cAMP/PKA/CREB signaling and anti-inflammatory effects. Neuropharmacology. 2017;116:260–269.
  • Hu L, Zhang R, Yuan Q, et al. The emerging role of microRNA-4487/6845-3p in Alzheimer’s disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell. BMC Syst Biol. 2018;12(S7):119.
  • Baskaran R, Poornima P, Huang CY, et al. Neferine prevents NF-κB translocation and protects muscle cells from oxidative stress and apoptosis induced by hypoxia. Biofactors. 2016;42(4):407–417.
  • Jin X, Xu Z, Cao J, et al. HO-1/EBP interaction alleviates cholesterol-induced hypoxia through the activation of the AKT and Nrf2/mTOR pathways and inhibition of carbohydrate metabolism in cardiomyocytes. Int J Mol Med. 2017;39(6):1409–1420.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408.
  • Reitz C. Genetic diagnosis and prognosis of Alzheimer’s disease: challenges and opportunities. Expert Rev Mol Diagn. 2015;15(3):339–348.
  • Park MH, Hong JT. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5(2):15.
  • Dong Y, Han LL, Xu ZX. Suppressed microRNA-96 inhibits iNOS expression and dopaminergic neuron apoptosis through inactivating the MAPK signaling pathway by targeting CACNG5 in mice with Parkinson’s disease. Mol Med. 2018;24(1):61.
  • Ko HM, Lee SH, Bang M, et al. Tyrosine kinase Fyn regulates iNOS expression in LPS-stimulated astrocytes via modulation of ERK phosphorylation. Biochem Biophys Res Commun. 2018;495(1):1214–1220.
  • Chan MC, Bautista E, Alvarado-Cruz I, et al. Inorganic mercury prevents the differentiation of SH-SY5Y cells: amyloid precursor protein, microtubule associated proteins and ROS as potential targets. J Trace Elem Med Biol. 2017;41:119–128.
  • Mudò G, Frinchi M, Nuzzo D, et al. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer’s disease. J Neuroinflammation. 2019;16(1):44.
  • Mattioli R, Francioso A, d’Erme M, et al. Anti-inflammatory activity of a polyphenolic extract from Arabidopsis thaliana in in vitro and in vivo models of Alzheimer’s disease. Int J Mol Sci. 2019;20(3):E708.
  • Chauhan G, Roy K, Kumar G, et al. Distinct influence of COX-1 and COX-2 on neuroinflammatory response and associated cognitive deficits during high altitude hypoxia. Neuropharmacology. 2019;146:138–148.
  • Cuello AC, Ferretti MT, Leon WC, et al. Early-stage inflammation and experimental therapy in transgenic models of the Alzheimer-like amyloid pathology. Neurodegenerative Dis. 2010;7(1-3):96–98.
  • Leimert KB, Verstraeten BSE, Messer A, et al. Cooperative effects of sequential PGF2α and IL-1β on IL-6 and COX-2 expression in human myometrial cells. Biol Reprod. 2019;100(5):1370–1385.
  • Ramos-Martinez I, Martínez-Loustalot P, Lozano L, et al. Neuroinflammation induced by amyloid β25-35 modifies mucin-type O-glycosylation in the rat’s hippocampus. Neuropeptides. 2018;67:56–62.
  • Schmidt K, Wienken M, Keller CW, et al. IL-1β-induced accumulation of amyloid: macroautophagy in skeletal muscle depends on ERK. Mediators Inflamm. 2017;2017:1–7.
  • Amani M, Zolghadrnasab M, Salari AA. NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiol Behav. 2019;202:52–61.
  • Liu X, Lu X, Zhen F, et al. LINC00665 induces acquired resistance to gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC. Mol Ther Nucleic Acids. 2019;16:155–161.
  • Chen L, Qin L, Liu X, et al. CTRP3 alleviates Ox-LDL-induced inflammatory response and endothelial dysfunction in mouse aortic endothelial cells by activating the PI3K/Akt/eNOS pathway. Inflammation. 2019;42(4):1350–1359.
  • He W, Yuan QH, Zhou Q. Histamine H3 receptor antagonist Clobenpropit protects propofol-induced apoptosis of hippocampal neurons through PI3K/AKT pathway. Eur Rev Med Pharmacol Sci. 2018;22(22):8013–8020.
  • Sizek H, Hamel A, Deritei D, et al. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput Biol. 2019;15(3):e1006402.
  • Carneiro BA, Kaplan JB, Altman JK, Giles FJ, et al. Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia. Cancer Biol Ther. 2015;16(5):648–656.
  • Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10(5):307–318.
  • Gong H, Luo Z, Chen W, et al. Marine compound Xyloketal B as a potential drug development target for neuroprotection. Mar Drugs. 2018;16(12):E516.
  • Adams CM, Clark-Garvey S, Porcu P, et al. Targeting the Bcl-2 family in B. Cell Lymphoma. Front Oncol. 2019;8:636. :
  • Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20(3):175–193.
  • Larsen BD, Sørensen CS. The caspase-activated DNase: apoptosis and beyond. Febs J. 2017;284(8):1160–1170.
  • Natunen T, Parrado AR, Helisalmi S, et al. Elucidation of the BACE1 regulating factor GGA3 in Alzheimer’s disease. JAD. 2013;37(1):217–232.
  • Ciccarone F, Vegliante R, Di Leo L, Amd Ciriolo MR. The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer. Semin Cancer Biol. 2017;47:50–56.
  • Sato-Carlton A, Nakamura-Tabuchi C, Chartrand SK, et al. Phosphorylation of the synaptonemal complex protein SYP-1 promotes meiotic chromosome segregation. J Cell Biol. 2018;217(2):555–570. :
  • Harper CB, Mancini GMS, van Slegtenhorst M, et al. Altered synaptobrevin-II trafficking in neurons expressing a synaptophysin mutation associated with a severe neurodevelopmental disorder. Neurobiol Dis. 2017;108:298–306.
  • Lopez-Santillan M, Iparraguirre L, Martin-Guerrero I, et al. Review of pharmacogenetics studies of L-asparaginase hypersensitivity in acute lymphoblastic leukemia points to variants in the GRIA1 gene. Drug Metab Pers Ther. 2017;32(1):1–9.
  • D’Antoni S, Berretta A, Bonaccorso CM, et al. Metabotropic glutamate receptors in glial cells. Neurochem Res. 2008;33(12):2436–2443.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.