38
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Robust adaptive control of an underactuated free-flying space robot under a non-holonomic structure in joint space

Pages 1113-1121 | Received 06 Apr 1995, Accepted 22 Mar 1996, Published online: 16 May 2007
 

Abstract

This paper introduces a robust adaptive control scheme for an underactuated free-flying space robot under non-holonomic constraints. An underactuated robot manipulator is defined as a robot that has fewer joint actuators than the number of total joints. Because, if one of the joints is out of order, it is so hard to repair the joint, especially in space, the control of such a robot manipulator is important. However, it is difficult to control an underactuated robot manipulator because of the reduced dimension of the input space, i.e. the non-holonomic structure of the underactuated system. The proposed scheme does not need to assume that the exact dynamic parameters must be known. It is analysed in joint space to control the underactuated robot mounted on the space station under parametric uncertainties and external disturbances. The simulation results have shown that the proposed method is very feasible and robust for a two-link planar free-flying space robot with one passive joint.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.