420
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Geometry and adhesive optimization of single-lap adhesive joints under impact

, , , ORCID Icon, , , & show all
Pages 677-703 | Received 19 Jul 2021, Accepted 11 Oct 2021, Published online: 25 Oct 2021
 

ABSTRACT

The use of composite adhesive joints increased in the last decades through structural applications, comprising the aeronautical and automotive industries. Contrary to the static loading case, in many real situations, adhesive joints are subjected to impact loads, such as in the event of vehicle crashes. Despite this fact, numerical modelling of this loading type is seldom addressed in the literature. This work evaluates the effect of the overlap length (LO) and adhesive type on the strength of composite single-lap joints (SLJ), when impact loaded, through experimental tests and cohesive zone models (CZM). Two different types of adhesives were tested (Araldite® AV138 and Sikaforce® 7752), keeping constant the composite adherends with unidirectional lay-up. The joints were subjected to a drop test and validated through the numerical model, by the analysis of stresses and damage, predicting the joints’ strength for different geometries and adhesives. It was concluded that the increase of LO increases the joint strength, especially in those with a more flexible adhesive (Sikaforce® 7752), since this type of adhesive prevents significant stress concentrations, and being a ductile adhesive, provides the ability to absorb peak stresses. The impact CZM was able to predict the impact joints’ strength with good accuracy.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Declaration of conflicting interests

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.