420
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Geometry and adhesive optimization of single-lap adhesive joints under impact

, , , ORCID Icon, , , & show all
Pages 677-703 | Received 19 Jul 2021, Accepted 11 Oct 2021, Published online: 25 Oct 2021

References

  • Cognard, P.;. Adhesives and Sealants: Basic Concepts and High Tech Bonding; Elsevier, Amsterdam, 2004.
  • Pazand, K.; Nobari, A. S. Identification of the Effect of Debonding on the Linear and Nonlinear Effective Damping of an Adhesive Joint. J. Sound Vib. 2016, 380, 267–278. DOI: 10.1016/j.jsv.2016.06.005.
  • Chowdhury, N. M.; Wang, J.; Chiu, W. K.; Chang, P. Static and Fatigue Testing Bolted, Bonded and Hybrid Step Lap Joints of Thick Carbon Fibre/epoxy Laminates Used on Aircraft Structures. Compos. Struct. 2016, 142, 96–106. DOI: 10.1016/j.compstruct.2016.01.078.
  • Pocius, A. V.; Dillard, D. A. Adhesion Science and Engineering: Surfaces, Chemistry and Applications; Elsevier: 2002.
  • Dlugosch, M.; Fritsch, J.; Lukaszewicz, D.; Hiermaier, S. Experimental Investigation and Evaluation of Numerical Modeling Approaches for hybrid-FRP-steel Sections under Impact Loading for the Application in Automotive Crash-structures. Compos. Struct. 2017, 174, 338–347. DOI: 10.1016/j.compstruct.2017.04.077.
  • Petrie, E.;. Handbook of Adhesives and Sealants; McGraw-Hill Education: 2007.
  • Wang, Z. Y.; Wang, L.; Guo, W.; Deng, H.; Tong, J. W.; Aymerich, F. An Investigation on Strain/stress Distribution around the Overlap End of Laminated Composite Single-lap Joints. Compos. Struct. 2009, 89(4), 589–595. DOI: 10.1016/j.compstruct.2008.11.002.
  • Goglio, L.; Rossetto, M.; Dragoni, E. Design of Adhesive Joints Based on Peak Elastic Stresses. Int. J. Adhes. Adhes. 2008, 28(8), 427–435. DOI: 10.1016/j.ijadhadh.2008.04.001.
  • Adams, R.; Harris, J. The Influence of Local Geometry on the Strength of Adhesive Joints. Int. J. Adhes. Adhes. 1987, 7(2), 69–80. DOI: 10.1016/0143-7496(87)90092-3.
  • Papini, M.; Fernlund, G.; Spelt, J. The Effect of Geometry on the Fracture of Adhesive Joints. Int. J. Adhes. Adhes. 1994, 14(1), 5–13. DOI: 10.1016/0143-7496(94)90015-9.
  • Lavalette, N. P.; Bergsma, O. K.; Zarouchas, D.; Benedictus, R. Influence of Geometrical Parameters on the Strength of Hybrid CFRP-aluminium Tubular Adhesive Joints. Compos. Struct. 2020, 240, 112077. DOI: 10.1016/j.compstruct.2020.112077.
  • Dean, G.; Crocker, L.; Read, B.; Wright, L. Prediction of Deformation and Failure of Rubber-toughened Adhesive Joints. Int. J. Adhes. Adhes. 2004, 24(4), 295–306. DOI: 10.1016/j.ijadhadh.2003.08.002.
  • Marchione, F. Stress Distribution in Double-lap Adhesive Joints: Effect of Adherend Reinforcement Layer. Int. J. Adhes. Adhes. 2021, 105, 102780. DOI: 10.1016/j.ijadhadh.2020.102780.
  • Machado, J. J. M.; Marques, E. A. S.; Da Silva, L. F. M. Adhesives and Adhesive Joints under Impact Loadings: An Overview. J. Adhes. 2017, 94, 1–32.
  • Sato, C.; Ikegami, K. Dynamic Deformation of Lap Joints and Scarf Joints under Impact Loads. Int. J. Adhes. Adhes. 2000, 20(1), 17–25. DOI: 10.1016/S0143-7496(99)00010-X.
  • Khan, A. S.; Lopez-Pamies, O.; Kazmi, R. Thermo-mechanical Large Deformation Response and Constitutive Modeling of Viscoelastic Polymers over a Wide Range of Strain Rates and Temperatures. Int. J. Plast. 2006, 22(4), 581–601. DOI: 10.1016/j.ijplas.2005.08.001.
  • Iwamoto, T.; Nagai, T.; Sawa, T. Experimental and Computational Investigations on Strain Rate Sensitivity and Deformation Behavior of Bulk Materials Made of Epoxy Resin Structural Adhesive. Int. J. Solids Struct. 2010, 47(2), 175–185. DOI: 10.1016/j.ijsolstr.2009.09.026.
  • Cowper, G. R.; Symonds, P. S. Strain-hardening and Strain-rate Effects in the Impact Loading of Cantilever Beams; Brown Univ Providence Ri, 1957.
  • Goglio, L.; Peroni, L.; Peroni, M.; Rossetto, M. High Strain-rate Compression and Tension Behaviour of an Epoxy Bi-component Adhesive. Int. J. Adhes. Adhes. 2008, 28(7), 329–339. DOI: 10.1016/j.ijadhadh.2007.08.004.
  • Johnson, G. R.; Cook, W. H. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures. Eng. Fract. Mech. 1985, 21(1), 31–48. DOI: 10.1016/0013-7944(85)90052-9.
  • Morin, D.; Haugou, G.; Bennani, B.; Lauro, F. Identification of a New Failure Criterion for Toughened Epoxy Adhesive. Eng. Fract. Mech. 2010, 77(17), 3481–3500. DOI: 10.1016/j.engfracmech.2010.09.016.
  • Chiu, W. K.; Jones, R. Unified Constitutive Model for Thermoset Adhesive, FM73. Int. J. Adhes. Adhes. 1995, 15(3), 131–136. DOI: 10.1016/0143-7496(95)91623-E.
  • Zgoul, M.; Crocombe, A. D. Numerical Modelling of Lap Joints Bonded with a Rate-dependent Adhesive. Int. J. Adhes. Adhes. 2004, 24(4), 355–366. DOI: 10.1016/j.ijadhadh.2003.11.006.
  • Dean, G.; Lord, G.; Duncan, B. In Comparison of the Measured and Predicted Performance of Adhesive Joints under Impact, NPL Report Cmmt (A) 206 Appendix 1 Finite Element Analysis Perforated Single-Lap Joint NPL Report Cmmt (A) 206, Citeseer: 1999.
  • May, M.; Voß, H.; Hiermaier, S. Predictive Modeling of Damage and Failure in Adhesively Bonded Metallic Joints Using Cohesive Interface Elements. Int. J. Adhes. Adhes. 2014, 49, 7–17. DOI: 10.1016/j.ijadhadh.2013.12.001.
  • Clarke, M. I.; Broughton, J. G.; Hutchinson, A. R.; Buckley, M. Application of the Design of Experiments Procedure to the Behaviour of Adhesively Bonded Joints with Plastically Deformable Adherends to Enable Further Understanding of Strain Rate Sensitivity. Int. J. Adhes. Adhes. 2013, 44, 226–231. DOI: 10.1016/j.ijadhadh.2013.03.003.
  • Kemiklioglu, U.; Sayman, O.; Batar, T.; Soykok, I. F.; Akderya, T.; Akan, E. Strength Comparison of Ductile and Brittle Adhesives under Single and Repeated Impacts. Appl. Adhes. Sci. 2015, 3(1), 15. DOI: 10.1186/s40563-015-0042-4.
  • Carlberger, T.; Stigh, U. An Explicit FE-model of Impact Fracture in an Adhesive Joint. Engineering fracture mechanics. 2007, 74(14), 2247–2262. DOI: 10.1016/j.engfracmech.2006.10.016.
  • Araújo, H. A. M.; Machado, J. J. M.; Marques, E. A. S.; Da Silva, L. F. M. Dynamic Behaviour of Composite Adhesive Joints for the Automotive Industry. Compos. Struct. 2017, 171, 549–561. DOI: 10.1016/j.compstruct.2017.03.071.
  • Ribeiro, T. E. A.; Campilho, R. D. S. G.; Da Silva, L. F. M.; Goglio, L. Damage Analysis of Composite–aluminium Adhesively-bonded Single-lap Joints. Compos. Struct. 2016, 136, 25–33. DOI: 10.1016/j.compstruct.2015.09.054.
  • Carvalho, U. T. F.; Campilho, R. D. S. G. Validation of Pure Tensile and Shear Cohesive Laws Obtained by the Direct Method with Single-lap Joints. Int. J. Adhes. Adhes. 2017, 77(Supplement C), 41–50. DOI: 10.1016/j.ijadhadh.2017.04.002.
  • Valente, J. P. A.; Campilho, R. D. S. G.; Marques, E. A. S.; Machado, J. J. M.; Da Silva, L. F. M. Geometrical Optimization of Adhesive Joints under Tensile Impact Loads Using Cohesive Zone Modelling. Int. J. Adhes. Adhes. 2020, 97, 102492. DOI: 10.1016/j.ijadhadh.2019.102492.
  • Machado, J. J. M.; Marques, E. A. S.; Campilho, R.; Da Silva, L. F. M. Mode I Fracture Toughness of CFRP as a Function of Temperature and Strain Rate. J. Compos. Mater. 2016, 51(23), 3315–3326. DOI: 10.1177/0021998316682309.
  • Machado, J. J. M.; Marques, E. A. S.; Campilho, R. D. S. G.; Da Silva, L. F. M. Mode II Fracture Toughness of CFRP as a Function of Temperature and Strain Rate. Compos. B Eng. 2017, 114, 311–318. DOI: 10.1016/j.compositesb.2017.02.013.
  • Valente, J. P. A.; Campilho, R. D. S. G.; Marques, E. A. S.; Machado, J. J. M.; Da Silva, L. F. M. Adhesive Joint Analysis under Tensile Impact Loads by Cohesive Zone Modelling. Compos. Struct. 2019, 222, 110894. DOI: 10.1016/j.compstruct.2019.110894.
  • Machado, J.; Gamarra, P. M.-R.; Marques, E.; Da Silva, L. F. M. Numerical Study of the Behaviour of Composite Mixed Adhesive Joints under Impact Strength for the Automotive Industry. Compos. Struct. 2018, 185, 373–380. DOI: 10.1016/j.compstruct.2017.11.045.
  • Abaqus® Documentation of the software Abaqus®; Dassault Systèmes. Vélizy-Villacoublay 2013.
  • Luo, H.; Yan, Y.; Zhang, T.; Liang, Z. Progressive Failure and Experimental Study of Adhesively Bonded Composite Single-lap Joints Subjected to Axial Tensile Loads. J. Adhes. Sci. Technol. 2016, 30(8), 894–914. DOI: 10.1080/01694243.2015.1131806.
  • Sane, A. U.; Padole, P. M.; Manjunatha, C. M.; Uddanwadiker, R. V.; Jhunjhunwala, P. Mixed Mode Cohesive Zone Modelling and Analysis of Adhesively Bonded Composite T-joint under Pull-out Load. J. Braz. Soc. Mech. Sci. Eng. 2018, 40(3), 167. DOI: 10.1007/s40430-018-1056-1.
  • Dimitri, R.; Trullo, M.; De Lorenzis, L.; Zavarise, G. Coupled Cohesive Zone Models for Mixed-mode Fracture: A Comparative Study. Eng. Fract. Mech. 2015, 148, 145–179. DOI: 10.1016/j.engfracmech.2015.09.029.
  • Rocha, R. J. B.; Campilho, R. D. S. G. Evaluation of Different Modelling Conditions in the Cohesive Zone Analysis of Single-lap Bonded Joints. J. Adhes. in press. 2017. DOI: 10.1080/00218464.2017.1307107.
  • Fessel, G.; Broughton, J. G.; Fellows, N. A.; Durodola, J. F.; Hutchinson, A. R. Evaluation of Different Lap-shear Joint Geometries for Automotive Applications. Int. J. Adhes. Adhes. 2007, 27(7), 574–583. DOI: 10.1016/j.ijadhadh.2006.09.016.
  • Karac, A.; Blackman, B. R. K.; Cooper, V.; Kinloch, A. J.; Rodriguez Sanchez, S.; Teo, W. S.; Ivankovic, A. Modelling the Fracture Behaviour of Adhesively-bonded Joints as a Function of Test Rate. Eng. Fract. Mech. 2011, 78(6), 973–989. DOI: 10.1016/j.engfracmech.2010.11.014.
  • Machado, J.; Marques, E.; Da Silva, L. F. Influence of Low and High Temperature on Mixed Adhesive Joints under Quasi-static and Impact Conditions. Compos. Struct. 2018, 194, 68–79. DOI: 10.1016/j.compstruct.2018.03.093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.