5,438
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand

, &
Pages 11-26 | Received 19 Sep 2008, Accepted 16 Jan 2009, Published online: 19 Feb 2010
 

Abstract

Orogenic hydrothermal systems in the South Island of New Zealand were active during Mesozoic and late Cenozoic collisional deformation and metamorphism of greywacke/schist terranes. Observations on the currently active mountain‐building environment yield insights on processes occurring in the upper 5–15 km of the crust, and observations on an adjacent lithologically identical exhumed ancient mountain belt provide information on processes at 10–20 km in the crust. Hydrothermal fluids were mainly derived from metamorphic dehydration reactions and/or circulating topographically driven meteoric water in these mountain belts. Three geochemically and mineralogically different types of hydrothermal alteration and vein mineralisation occurred in these orogenic belts, and gold enrichment (locally economic) occurred in some examples of each of these three types. The first type of alteration involved fluids that were in or near chemical equilibrium with their green‐schist facies host rocks. Fluid flow was controlled by discontinuous fractures, and by microshears and grain boundaries in host rocks, in zones from metres to hundreds of metres thick. Vein and alteration mineralogy was similar to that of the host rocks, and included calcite and chlorite. The second type of alteration occurred where the fluids were in distinct disequilibrium with the host rocks. Fracture permeability was important for fluid flow, but abundant host rock alteration occurred as well. The alteration zones were characterised by decomposition of chlorite and replacement by ankeritic carbonate in zones up to tens of metres thick. The mineralising fluid was deep‐sourced and initially rock‐equilibrated, with some meteoric input. The third type of mineralisation was controlled almost exclusively by fracture permeability, and host rock alteration was minor (centimetre scale). This mineralisation type commonly involved calcite and chlorite as vein and alteration minerals, and mineralisation fluids had a major meteoric water component. The three mineralisation types can be traced spatially and/or temporally from one to another with some overlap. The first type is characteristic of the deeper parts of an orogenic hydrothermal system, and this type gave way to the second type formed at shallower crustal levels, locally near to the surface. The third type of alteration is typically a late‐stage, shallow‐level phenomenon.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.