533
Views
3
CrossRef citations to date
0
Altmetric
Technical Papers

A New Method to Efficiently Estimate the Equilibrium State of Pebble Bed Reactors

ORCID Icon & ORCID Icon
Pages 1577-1590 | Received 29 Dec 2021, Accepted 28 Feb 2022, Published online: 18 May 2022
 

Abstract

Equilibrium state generation for the pebble bed reactor (PBR) is challenging due to the need to simultaneously account for both pebble movement and changes in fuel compositions. Multigroup diffusion codes have been historically employed to generate the equilibrium state and perform conventional neutronics calculations for PBRs, while neutron cross-section generation has been challenging due to the double heterogeneity of PBRs. Thanks to the capability to treat the double heterogeneity naturally, continuous-energy Monte Carlo (MC) methods are more suitable for detailed PBR analysis, but at the cost of significantly higher computing power.

This paper presents a new Methodology to Efficiently Estimate the Equilibrium State of a PBR (MEEES-PBR) to generate equilibrium-state MC models for PBRs at lower computational expense. The MEEES-PBR is expected to contribute to the future development of PBR designs by accelerating the efforts in core designs and parametric studies. The theory of the MEEES-PBR is introduced in detail in this paper, and the procedure is demonstrated via an example application to the 165-MW(thermal) Xe-100 design. The computational cost and the accuracy of the MEEES-PBR are discussed to prove its viability.

Acknowledgments

The authors would like to thank Eben Mulder and Sonat Sen from X-energy for technical discussions on the Xe-100 model at the initial stage of this study. The authors are also grateful to the two anonymous reviewers of this manuscript for their constructive comments and suggestions during the preparation of the manuscript.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.