129
Views
0
CrossRef citations to date
0
Altmetric
Invited Keynote Paper Award Winners

Using discrete simulations of compaction and sintering to predict final part geometry

, , , &
Pages 208-215 | Received 27 Dec 2022, Accepted 30 Mar 2023, Published online: 12 Apr 2023
 

ABSTRACT

A Discrete Element Method (DEM) model is used to simulate the compaction and sintering of ceramic oxides. The process kinematics is decomposed into loading, unloading and ejection of the pellet. Interactions between the particles are considered elastoplastic by implementing a model able to tackle large densities. A simplified approach is used in the sintering stage, which focuses on the final part geometry rather than kinetics. The results are in good agreement with experimental data and FEM simulations from the literature regarding density gradient, elastic spring-back and final geometry. The simulations show that the friction coefficient between the agglomerates and the die is the primary factor for the density gradient in the pellet. This density gradient induces non-homogeneous sintering, which results in a final geometry with a diabolo effect. It is the first time that DEM reproduces this effect with the advantage of considering explicitly the particulate nature of the powder.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.