129
Views
0
CrossRef citations to date
0
Altmetric
Invited Keynote Paper Award Winners

Using discrete simulations of compaction and sintering to predict final part geometry

, , , &
Pages 208-215 | Received 27 Dec 2022, Accepted 30 Mar 2023, Published online: 12 Apr 2023

References

  • In Proceedings of 2004 Powder Metallurgy World Congress, on CD–ROM. MPIF, Vienna, Austria; 2004.
  • Bathe K-J. Finite Element Method. Wiley Encyclopedia of Computer Science and Engineering [Internet]. John Wiley & Sons, Ltd; 2008. p. 1–12. Available from: https://onlinelibrary.wiley.com/doi/abs/10.10029780470050118.ecse159.
  • Foo YY, Sheng Y, Briscoe BJ. An experimental and numerical study of the compaction of alumina agglomerates. Int J Solids Struct. 2004;41:5929–5943.
  • Burman BC, Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique. 1980;30:331–336.
  • Shima S, Kotera H, Ujie Y. A study of constitutive behaviour of powder assembly by particulate modeling. 材料. 1995;44:163–168.
  • Heyliger PR, McMeeking RM. Cold plastic compaction of powders by a network model. J Mech Phys Solids. 2001;49:2031–2054.
  • Martin CL, Bouvard D, Shima S. Study of particle rearrangement during powder compaction by the discrete element method. J Mech Phys Solids. 2003;51:667–693.
  • Pizette P, Martin CL, Delette G, et al. Compaction of aggregated ceramic powders: from contact laws to fracture and yield surfaces. Powder Technol. 2010;198:240–250.
  • Skrinjar O, Larsson P-L. Cold compaction of composite powders with size ratio. Acta Mater. 2004;7:1871–1884.
  • Martin CL, Bouvard D. Study of the cold compaction of composite powders by the discrete element method. Acta Mater. 2003;51:373–386.
  • Fleck NA. On the cold compaction of powders. J Mech Phys Solids. 1995;43:1409–1431.
  • Moreno-Atanasio R, Ghadiri M. Mechanistic analysis and computer simulation of impact breakage of agglomerates: effect of surface energy. Chem Eng Sci. 2006;61:2476–2481.
  • Paredes-Goyes B, Jauffres D, Missiaen JM, et al. Grain growth in sintering: A discrete element model on large packings. Acta Mater. 2021;218:117182.
  • Vermeer PA, Diebels S, Ehlers W, et al. Continuous and discontinuous modelling of cohesive-frictional materials edited by P.A. Vermeer, S. Diebels, W. Ehlers, etal, editors. 1st ed. Berlin, Heidelberg: Springer; 2001. p. 185–204.
  • Radeke CA, Glasser BJ, Khinast JG. Large-scale powder mixer simulations using massively parallel GPUarchitectures. Chem Eng Sci. 2010;65:6435–6442.
  • Reiterer M, Kraft T, Janosovits U, et al. Finite element simulation of cold isostatic pressing and sintering of SiC components. Ceram Int. 2004;30:177–183.
  • Pizette P, Martin CL, Delette G, et al. Green strength of binder-free ceramics. J Eur Ceram Soc. 2013;33:975–984.
  • Harthong B, Jérier JF, Dorémus P, et al. Modeling of high-density compaction of granular materials by the discrete element method. Int J Solids Struct. 2009;46:3357–3364.
  • Rycroft CH. VORO++: a three-dimensional voronoi cell library in C++. Chaos. 2009;19:41111.
  • Jefferson G, Haritos GK, McMeeking RM. The elastic response of a cohesive aggregate – a discrete element model with coupled particle interaction. J Mech Phys Solids. 2002;50:2539–2575.
  • He Y, Evans TJ, Yu AB, et al. DEM investigation of the role of friction in mechanical response of powder compact. Powder Technol. 2017;319:183–190.
  • Zhang W, Yuan C, Zhang S, et al. Correlation mechanism of friction behavior and topological properties of the contact network during powder compaction. Particuology. 2023;82:98–110.
  • Bouvard D, McMeeking RM. Deformation of interparticle necks by diffusion-controlled creep. J Am Ceram Soc. 1996. [cited 2022 Apr 27];79. Available from: https://www.osti.gov/biblio/230739.
  • Pan J, Le H, Kucherenko S, et al. A model for the sintering of spherical particles of different sizes by solid state diffusion. Acta Mater. 1998;46:4671–4690.
  • Martin CL, Bordia RK. The effect of a substrate on the sintering of constrained films. Acta Mater. 2009;57:549–558.
  • Ablitzer C. Etude de la compressibilité de poudre d’UO2 voie humide TU2 et voie sèche Lingen en relation avec leurs propriétés physiques. Rapport CEA NT-LCU-04-015.; 2004.
  • Alvain O. Caractérisation, modélisation et simulation numérique de la mise en forme de pièces par compression et frittage de poudres dures [PhD Thesis]. Institut National Polytechnique de Grenoble; 2001.
  • Lou J, Gabbitas B, Zhang DL. The effects of lubrication on the density gradient of titanium powder compacts. KEM. 2013;551:86–91.
  • Lemieux P, Thomas Y, Mongeon P-E, et al. Benefits of Die Wall lubrication for powder compaction. 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.