154
Views
1
CrossRef citations to date
0
Altmetric
Articles

Strong ions and charge-balance

ORCID Icon
Pages 111-118 | Received 25 Oct 2022, Accepted 11 Feb 2023, Published online: 22 Feb 2023
 

Abstract

It has been shown that the ability to predict the pH in any chemically characterized fluid, together with its buffer-capacity and acid content can be based on the requirement of electroneutrality, conservation of mass, and rules of dissociation as provided by physical chemistry. More is not required, and less is not enough. The charge in most biological fluids is dominated by the constant charge on the completely dissociated strong ions but, nonetheless, a persistent narrative in physiology has problematized the notion that these have any role at all in acid-base homeostasis. While skepticism is always to be welcomed, some common arguments against the importance of strong ions are examined and refuted here. We find that the rejection of the importance of strong ions comes with the prize that even very simple systems such as fluids containing nothing else, or solutions of sodium bicarbonate in equilibrium with known tensions of CO2 become incomprehensible. Importantly, there is nothing fundamentally wrong with the Henderson–Hasselbalch equation but the idea that it is sufficient to understand even simple systems is unfounded. What it lacks for a complete description is a statement of charge-balance including strong ions, total buffer concentrations, and water dissociation.

Disclosure statement

The author reports there are no competing interests to declare.

Data availability statement

R code to demonstrate the quantitative results and reproduce the figures are found here: https://figshare.com/s/209db01b9038f509ab93

Additional information

Funding

No funding was required for this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.