Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 30, 2000 - Issue 9
181
Views
109
CrossRef citations to date
0
Altmetric
Research Article

Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids

, , , &
Pages 857-866 | Published online: 22 Sep 2008
 

Abstract

1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09 (10 pM quercetin). Vmax (mean ± SD; pmol·min−1·mg−1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis‐Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min−1·mg−1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.