Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 47, 2017 - Issue 5
403
Views
6
CrossRef citations to date
0
Altmetric
Molecular Toxicology

Characterization of the methemoglobin forming metabolites of benzocaine and lidocaine

, , , , , & show all
Pages 431-438 | Received 06 Apr 2016, Accepted 28 May 2016, Published online: 20 Jun 2016
 

Abstract

1. Topical anesthesia with benzocaine or lidocaine occasionally causes methemoglobinemia, an uncommon but potentially fatal disorder where the blood has a reduced ability to transport oxygen. Previous in vitro studies using human whole blood have shown that benzocaine causes more methemoglobin (MetHb) formation than lidocaine, and that both compounds require metabolic transformation to form the MetHb producing species. In the current investigation, the active species of benzocaine forming the MetHb was investigated.

2. HPLC analysis of benzocaine samples incubated with human hepatic S9 showed the formation of a peak with the same UV spectrum and retention time as benzocaine hydroxylamine (BenzNOH). To confirm the activity of BenzNOH, MetHb production following exposure to the compound was determined in whole human blood using an Avoximeter 4000 CO-oximeter.

3. BenzNOH produced MetHb in a concentration dependent manner without the need for metabolic activation. Benzocaine in the presence of metabolic activation required a concentration of 500 μM to produce a similar degree of MetHb formation as 20 μM BenzNOH without activation. Previous work suggested that two metabolites of lidocaine may also form MetHb; N-hydroxyxylidine and 4-hydroxyxylidine. Of these two metabolites 4-hydroxyxylidine produced the most MetHb in whole blood in vitro in the absence of metabolic activation, however BenzNOH produced up to 14.2 times more MetHb than 4-hydroxyxylidine at a similar concentration.

4. These results suggest that the ability of benzocaine to form MetHb is likely to be mediated through its hydroxylamine metabolite and that this metabolite is inherently more active than the potentially MetHb-forming metabolites of lidocaine.

Acknowledgements

The authors would like to thank Dr. Sarah Rogstad for helpful discussions on the mass spectral analysis of BenzNOH.

Declaration of interest

This investigation was supported by a CDER Directors Grant. The authors report no declarations of interest.

Disclaimer

The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.