486
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Nicotinic cholinergic and dopaminergic receptor mRNA expression in male and female rats with high or low preference for nicotine

, MD, PhD, , PhD, , MD, , MD, PhD & , PhD
Pages 556-566 | Received 16 Feb 2016, Accepted 03 Jun 2016, Published online: 18 Jul 2016
 

ABSTRACT

Background: Nicotine exerts its central actions through nicotinic acetylcholine receptors (nAChRs), which in turn regulate major neurotransmitter systems including dopamine. Nicotinic and dopaminergic systems play significant roles in physiological functions, neuropsychiatric disorders, and addiction. Objectives: To evaluate possible differences in the expression of nAChR subunit and dopamine receptor (DR) mRNAs following voluntary nicotine intake. Methods: Male and female rats (n = 67) were exposed to long-term free-choice oral nicotine (24 hours/day, 6 weeks); rats with maximum and minimum nicotine preference/intake were selected. The mRNA levels of genes encoding α4,β2,α5, and α7 nAChR subunits and DR Drd1and Drd2 subtypes were evaluated in the striatum (STR), prefrontal cortex (PFC), and hippocampus using quantitative real-time polymerase chain reaction in selected rats (n = 30) and their control groups (n = 15). Results: In addition to baseline differences, expression changes were observed in the mRNA levels of evaluated genes in rats exposed to voluntary oral nicotine in a brain region-, sex-, and preference-related manner. Nicotine intake is correlated negatively with Chrnb2, Chrna7 and positively with Drd1 expression. In the cholinergic system, regional differences in Chnrb2 and Chrna5, sex differences in Chrna4 and Chrna5, and nicotine preference effects in the expression of all subunits except α4 were observed. Chrna5 was lower in maximum than in minimum preferring, and in male than female rats, supporting the inhibitory role of the α5 subunit in nicotine dependence. Nicotine increased Drd2 mRNA expression only in minimum preferring female rats in STR and PFC. Conclusion: Modulation of nAChR and DR gene expression by nicotine may have clinical implications and aid drug development. Pharmaceuticals targeting the nicotinic cholinergic and dopaminergic systems might be expected to have differential efficacy that varies with the patient’s sex or smoking status.

Acknowledgments

The authors would like to thank Jacqueline Renee Gutenkunst (Izmir University of Economics, School of Foreign Languages) for her effort in refining the language of this article.

Funding

This study was supported by Grants 12-BAM-002 and 12-TIP-023.

Declaration of interest

The authors report no relevant financial conflicts.

Supplemental data

Supplemental data for this article can be accessed on the publisher’s website.

Additional information

Funding

This study was supported by Grants 12-BAM-002 and 12-TIP-023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.