257
Views
12
CrossRef citations to date
0
Altmetric
Mineralization

Mineralization of the Pharmaceutical β-Blocker Atenolol by Means of Indirect Electrochemical Advanced Oxidation Process: Parametric and Kinetic Study

, , , &
Pages 2942-2950 | Received 18 Oct 2013, Accepted 08 Jul 2014, Published online: 02 Sep 2014
 

Abstract

Atenolol is a β-blocker that can be found in urban wastewaters and which is not removed efficiently by conventional wastewater treatments. In the present study, electro-Fenton (EF) process was used to assess the degradation and mineralization of pharmaceutical atenolol in aqueous solutions. Electrolyses of 250 mL of atenolol solution (0.17 mM), at initial pH 3, were carried out in an undivided electrolytic cell in galvanostatic mode. Influence of material cathode (graphite, stainless steel, and platinized titanium), applied current (100–500 mA), sulfate dosage (0.01–0.5 M), and catalyst ferrous ions concentration (1–10 mM), on the oxidation efficiency was studied. Atenolol mineralization was monitored by COD dosage. Kinetic analysis indicated that atenolol mineralization followed a pseudo-first order model and the rate constant increased with rising current, ferrous ions concentration (up to 5 mM) and electrolyte concentration. Results showed that graphite cathode, 0.5 M Na2SO4 electrolyte, 0.3 A and 5 mM FeSO4 catalyst were the best conditions for atenolol mineralization. In these optimal conditions, after 240 min more than 87% of the initial COD was removed. The corresponding current efficiency (CE) and specific energy consumption (SEC) were 22.33% and 0.194 kWh/kg COD, respectively. This latter corresponds to 0.078 kWh/m3 of treated wastewater.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.