500
Views
51
CrossRef citations to date
0
Altmetric
Original Article

Photocatalytic ozonation degradation of ciprofloxacin using ZnO nanoparticles immobilized on the surface of stones

, , &
Pages 846-854 | Received 25 Apr 2018, Accepted 02 Jun 2018, Published online: 08 Oct 2018
 

Abstract

Ciprofloxacin is used in the treatment of bacterial infections. Because ciprofloxacin is not effectively degraded by biological processes, advanced oxidation processes such as photocatalytic ozonation are applied to remove this antibiotic from wastewater. The aim of this study was to investigate photocatalytic ozonation for the removal of ciprofloxacin from aquatic environments and optimization of the effective parameters of the process. For this purpose, ZnO nanoparticles were synthesized using the thermal method and immobilized on the surface of stones. The structural properties of the nanoparticles were determined by XRD, TEM, Photoluminescence (PL) and SEM. Experiments were carried out in a Plexiglas reactor supported with the continuous injection of ozone. The effective parameters for removal efficiency were reaction time, initial concentration of ciprofloxacin, pH, photocatalyst concentration and reaction kinetics. The highest ciprofloxacin removal efficiency occurred at the following optimal conditions: pH of 7, reaction time of 30 min, photocatalyst concentration of 3 g/L and initial ciprofloxacin concentration of 10 mg/L. Removal efficiency of 96% was obtained under these conditions. Linear kinetic models showed that the process followed pseudo-first order and Langmuir-Hinshelwood kinetics. This process had a high removal efficiency and suitable for removal of ciprofloxacin from aquatic environments.GRAPHICAL ABSTRACT

Acknowledgments

This research carried out in the Environmental Health Engineering Research Center of Kerman University of Medical Sciences and was sponsored by the Vice-Chancellor for Research and Technology of Kerman University of Medical Sciences. The authors take this opportunity to express their gratitude for the support and assistance extended by the facilitators during the conduct of the research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.