500
Views
51
CrossRef citations to date
0
Altmetric
Original Article

Photocatalytic ozonation degradation of ciprofloxacin using ZnO nanoparticles immobilized on the surface of stones

, , &
Pages 846-854 | Received 25 Apr 2018, Accepted 02 Jun 2018, Published online: 08 Oct 2018

References

  • Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. Pharmaceutical Residues in Environmental Waters and Wastewater: Current State of Knowledge and Future Research. Anal. Bioanal. Chem. 2011, 399, 251–275. DOI:10.1007/s00216-010-4300-9
  • Golet, E. M.; Strehler, A.; Alder, A. C.; Giger, W. Determination of Fluoroquinolone Antibacterial Agents in Sewage Sludge and Sludge-Treated Soil Using Accelerated Solvent Extraction Followed by Solid-Phase Extraction. Anal. Chem. 2002, 74, 5455–5462. DOI:10.1021/ac025762m
  • Gracia-Lor, E.; Sancho, J. V.; Serrano, R.; Hernández, F. Occurrence and Removal of Pharmaceuticals in Wastewater Treatment Plants at the Spanish Mediterranean Area of Valencia. Chemosphere 2012, 87, 453–462. DOI:10.1016/j.chemosphere.2011.12.025
  • Kümmerer, K. Antibiotics in the Aquatic Environment–A Review–Part I. Chemosphere 2009, 75, 417–434. DOI:10.1016/j.chemosphere.2008.11.086
  • Homem, V.; Santos, L. Degradation and Removal Methods of Antibiotics from Aqueous Matrices-A Review. J. Environ. Manag. 2011, 92, 2304–2347. DOI:10.1016/j.jenvman.2011.05.023
  • Segura, P. A.; François, M.; Gagnon, C.; Sauvé, S. Review of the Occurrence of Anti-Infectives in Contaminated Wastewaters and Natural and Drinking Waters. Environ. Health Perspect. 2009, 117, 675. DOI:10.1289/ehp.11776
  • Lanzky, P. F.; Halling-Sørensen, B. The Toxic Effect of the Antibiotic Metronidazole on Aquatic Organisms. Chemosphere 1997, 35, 2553. DOI:10.1016/S0045-6535(97)00324-X
  • Carabineiro, S.; Thavorn-Amornsri, T.; Pereira, M.; Serp, P.; Figueiredo, J. Comparison between Activated Carbon, Carbon Xerogel and Carbon Nanotubes for the Adsorption of the Antibiotic Ciprofloxacin. Catal. Today 2012, 186, 29–34. DOI:10.1016/j.cattod.2011.08.020
  • Pápai, K.; Budai, M.; Ludányi, K.; Antal, I.; Klebovich, I. In Vitro Food-Drug Interaction Study: Which Milk Component Has a Decreasing Effect on the Bioavailability of Ciprofloxacin? J. Pharm. Biomed. Anal. 2010, 52, 37–42. DOI:10.1016/j.jpba.2009.12.003
  • Parsa, J. B.; Panah, T. M.; Chianeh, F. N. Removal of Ciprofloxacin from Aqueous Solution by a Continuous Flow Electro-Coagulation Process. Korean J. Chem. Eng. 2016, 33, 893–901. DOI:10.1007/s11814-015-0196-6
  • Jia, A.; Wan, Y.; Xiao, Y.; Hu, J. Occurrence and Fate of Quinolone and Fluoroquinolone Antibiotics in a Municipal Sewage Treatment Plant. Water Res. 2012, 46, 387–394. DOI:10.1016/j.watres.2011.10.055
  • Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes. Environ. Int. 2009, 35, 402–417. DOI:10.1016/j.envint.2008.07.009
  • Dewitte, B.; Dewulf, J.; Demeestere, K.; Van De Vyvere, V.; De Wispelaere, P.; Van Langenhove, H. Ozonation of Ciprofloxacin in Water: HRMS Identification of Reaction Products and Pathways. Environ. Sci. Technol. 2008, 42, 4889–4895. DOI:10.1021/es8000689
  • Moussavi, G.; Majidi, F.; Farzadkia, M. The Influence of Operational Parameters on Elimination of Cyanide from Wastewater Using the Electrocoagulation Process. Desalination 2011, 280, 127–133. DOI:10.1016/j.desal.2011.06.052
  • Liu, X.; Lv, P.; Yao, G.; Ma, C.; Tang, Y.; Wu, Y.; Huo, P.; Pan, J.; Shi, W.; Yan, Y. Selective Degradation of Ciprofloxacin with Modified NaCl/TiO2 Photocatalyst by Surface Molecular Imprinted Technology. Colloids Surf. A 2014, 441, 420–426. DOI:10.1016/j.colsurfa.2013.10.005
  • Mehrjouei, M.; Müller, S.; Möller, D. A Review on Photocatalytic Ozonation Used for the Treatment of Water and Wastewater. Chem. Eng. J. 2015, 263, 209–219. DOI:10.1016/j.cej.2014.10.112
  • Bhadra, R.; Singh, V. N.; Mehta, B. R.; Datta, P. Synthesis, Characterization, and Possible Applications of ZnO Nanocrystals. J. Disper. Sci. Technol. 2010, 31, 1202–1207. DOI:10.1080/01932690903224136
  • Behnajady, M. A.; Modirshahla, N.; Mirzamohammady, M.; Vahid, B.; Behnajady, B. Increasing Photoactivity of Titanium Dioxide Immobilized on Glass Plate with Optimization of Heat Attachment Method Parameters. J. Hazard. Mater. 2008, 160, 508–513. DOI:10.1016/j.jhazmat.2008.03.049
  • Qin, G.; Wu, Q.; Sun, Z.; Wang, Y.; Luo, J.; Xue, S. Enhanced Photoelectrocatalytic Degradation of Phenols with Bifunctionalized Dye-Sensitized TiO2 Film. J. Hazard. Mater. 2012, 199-200, 226–232. DOI:10.1016/j.jhazmat.2011.10.092
  • Erol, F.; Özbelge, T. A. Catalytic Ozonation with Non-Polar Bonded Alumina Phases for Treatment of Aqueous Dye Solutions in a Semi-Batch Reactor. Chem. Eng. J. 2008, 139, 272–283. DOI:10.1016/j.cej.2007.07.100
  • Khan, M. H.; Jung, J. Y. Ozonation Catalyzed by Homogeneous and Heterogeneous Catalysts for Degradation of DEHP in Aqueous Phase. Chemosphere 2008, 72, 690–696. DOI:10.1016/j.chemosphere.2008.02.037
  • Darezereshki, E.; Alizadeh, M.; Bakhtiari, F.; Schaffie, M.; Ranjbar, M. A Novel Thermal Decomposition Method Forthe Synthesis of ZnO Nanoparticles from Low Concentration ZnSO4 Solutions. Appl. Clay Sci. 2011, 54, 107–111. DOI:10.1016/j.clay.2011.07.023
  • Khataee, A.; Pons, M.-N.; Zahraa, O. Photocatalytic Degradation of Three Azo Dyes Using Immobilized TiO2 Nanoparticles on Glass Plates Activated by UV Light Irradiation: Influence of Dye Molecular Structure. J. Hazard. Mater. 2009, 168, 451–457. DOI:10.1016/j.jhazmat.2009.02.052
  • Mou, H.; Song, C.; Zhou, Y.; Zhang, B.; Wang, D. Design and Synthesis of Porous Ag/ZnO Nanosheets Assemblies as Super Photocatalysts for Enhanced Visible-Light Degradation of 4-Nitrophenol and Hydrogen Evolution. Appl. Catal. B Environ. 2018, 221, 565–573. DOI:10.1016/j.apcatb.2017.09.061
  • Bhatia, S.; Verma, N. Photocatalytic Activity of ZnO Nanoparticles with Optimization of Defects. Mater. Res. Bull. 2017, 95, 468–476. DOI:10.1016/j.materresbull.2017.08.019
  • El-Kemary, M.; El-Shamy, H.; El-Mehasseb, I. Photocatalytic Degradation of Ciprofloxacin Drug in Water Using ZnO Nanoparticles. J. Lumin. 2010, 130, 2327–2331. DOI:10.1016/j.jlumin.2010.07.013
  • Kurniawan, T. A.; Lo, W-H.; Chan, G. Radicals-Catalyzed Oxidation Reactions for Degradation of Recalcitrant Compounds from Landfill Leachate. Chem. Eng. J. 2006, 125, 35–57. DOI:10.1016/j.cej.2006.07.006
  • Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced Oxidation Processes (AOP) for Water Purification and Recovery. Catal. Today 1999, 53, 51–59. DOI:10.1016/S0920-5861(99)00102-9
  • Pirgalıoğlu, S.; Özbelge, T. A. Comparison of Non-Catalytic and Catalytic Ozonation Processes of Three Different Aqueous Single Dye Solutions with respect to Powder Copper Sulfide Catalyst. Appl. Catal. A 2009, 363, 157–163. DOI:10.1016/j.apcata.2009.05.011
  • Pillai, K. C.; Kwon, T. O.; Moon, I. S. Degradation of Wastewater from Terephthalic Acid Manufacturing Process by Ozonation Catalyzed with Fe2+,H2O2 and UV Light: direct versus Indirect Ozonation Reactions. Appl. Catal. B 2009, 91, 319–328. DOI:10.1016/j.apcatb.2009.05.040
  • Moussavi, G.; Khavanin, A.; Alizadeh, R. The Investigation of Catalytic Ozonation and Integrated Catalytic Ozonation/Biological Processes for the Removal of Phenol from Saline Wastewaters. J. Hazard. Mater. 2009, 171, 175–181. DOI:10.1016/j.jhazmat.2009.05.113
  • Elsherbiny, A. S.; Salem, M. A.; Ismail, A. A. Influence of the Alkyl Chain Length of Cyanine Dyes on Their Adsorption by Na+Montmorillonite from Aqueous Solutions. Chem. Eng. J. 2012, 200-202, 283–290. DOI:10.1016/j.cej.2012.06.050
  • Hassani, A.; Khataee, A.; Karaca, S. Photocatalytic Degradation of Ciprofloxacin by Synthesized TiO2 Nanoparticles on Montmorillonite: Effect of Operation Parameters and Artificial Neural Network Modeling. J. Mol. Catal. A: Chem. 2015, 409, 149–161. DOI:10.1016/j.molcata.2015.08.020
  • Pirhashemi, M.; Habibi-Yangjeh, A. Preparation of AgCl–ZnO Nanocomposites as Highly Efficient Visible-Light Photocatalysts in Water by One-Pot Refluxing Method. J. Alloys Compd. 2014, 601, 1–8. DOI:10.1016/j.jallcom.2014.02.111
  • Khataee, A.; Kıranşan, M.; Karaca, S.; Sheydaei, M. Photocatalytic Ozonation of Metronidazole by Synthesized Zinc Oxide Nanoparticles Immobilized on Montmorillonite. J. Taiwan Inst. Chem. Eng. 2017, 74, 196–204. DOI:10.1016/j.jtice.2017.02.014
  • Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S.; Hamilton, J. W.; Byrne, J. A.; O'shea, K. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B 2012, 125, 331–349. DOI:10.1016/j.apcatb.2012.05.036
  • Shirzad Siboni, M.; Samadi, M.; Rahmani, A.; Khataee, A.; Bordbar, M.; Samarghandi, M. Photocatalytic Removal of Hexavalet Chromium and Divalent Nickel from Aqueous Solution by UV Irradiation in the Presence of Titanium Dioxide Vanoparticles. Iran. J. Health Environ. 2010, 3, 261–270.
  • Cho, Y.-S.; Oh, I.-A.; Jung, N. R. Fabrication of Porous Titania Particles from Water-in-Oil Emulsions for the Applications of Photocatalyst. J. Disper. Sci. Technol. 2016, 37, 676–686. DOI:10.1080/01932691.2015.1055758
  • Khezrianjoo, S.; Revanasiddappa, H. Langmuir-Hinshelwood Kinetic Expression for the Photocatalytic Degradation of Metanil Yellow Aqueous Solutions by ZnO Catalyst. Chem. Eng. J. 2012, 3, 1–9.
  • Teixeira, S.; Martins, P. M.; Lanceros - Méndez, S.; Kühn, K.; Cuniberti, G. Reusability of Photocatalytic TiO2 and ZnO Nanoparticles Immobilized in Poly (Vinylidene Difluoride)-Co-Trifluoroethylene. Appl. Surf. Sci. 2016, 384, 497–504. DOI:10.1016/j.apsusc.2016.05.073
  • Defaei, M.; Taheri-Kafrani, A.; Miroliaei, M.; Yaghmaei, P. Improvement of Stability and Reusability of α-Amylase Immobilized on Naringin Functionalized Magnetic Nanoparticles: A Robust Nanobiocatalyst. Int. J. Biol. Macromol. 2018, 113, 354–360. DOI:10.1016/j.ijbiomac.2018.02.147

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.