137
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of g-C3N4@WO3 nanocomposites for dye adsorptive removal in water medium: Equilibrium and kinetics studies

, , , , , & show all
Pages 1733-1745 | Received 02 Mar 2023, Accepted 18 Jun 2023, Published online: 05 Jul 2023
 

Abstract

In this research, WO3, g-C3N4, and g-C3N4@WO3 nanocomposites were synthesized from Na2WO4.2H2O and urea precusors via the hydrothermal method in a strong acid medium. Physico-chemical characteristics of WO3, g-C3N4, and g-C3N4@WO3 nanocomposites were examined by means of XRD, Raman, FTIR, FE-SEM, BET, and UV-Vis spectroscopy. The produced materials were then applied for studying adsorptive removal of methylene blue (MB) as a model pollutant from aqueous solutions. The results showed that g-C3N4@WO3 nanocomposites were successfully synthesized, with a hexagonal shape and an average crystal size of in the range of 15.4–20.7 nm. The surface area (68.3 m2/g) of g-C3N4@WO3 nanocomposites was 2.37 times higher compared to sole WO3, and g-C3N4@WO3 composites were mesoporous materials with a typical average pore diameter of 4.5 nm. It was revealed that the MB adsorption process occurred extremely quickly, reaching equilibrium after only about 20 min, with a maximum uptake of MB of 190 mg/g which was significantly higher than other adsorbents. The adsorption process was followed the first-order-kinetics model and the adsorbent showed high durability in adsorbing MB, with a slight decline in adsorption efficiency after 4 cycles (from 98.7% to 95.9%). This research provides an easy method for producing high adsorption capacity nanocomposite which can be applied for efficient removal of MB from water.

Graphical Abstract

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

All data generated or analyzed during this study are included in this published article.

Additional information

Funding

This research was financially supported by the research program of the Ministry of Education and Training under the grand number B2021-XDA-07.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.