139
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of g-C3N4@WO3 nanocomposites for dye adsorptive removal in water medium: Equilibrium and kinetics studies

, , , , , & show all
Pages 1733-1745 | Received 02 Mar 2023, Accepted 18 Jun 2023, Published online: 05 Jul 2023

References

  • Kishor, R.; Purchase, D.; Saratale, G. D.; Saratale, R. G.; Ferreira, L. F. R.; Bilal, M.; Chandra, R.; Bharagava, R. N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021, 9, 105012. DOI: 10.1016/j.jece.2020.105012.
  • Pearce, C. I.; Lloyd, J. R.; Guthrie, J. T. The Removal of Color from Textile Wastewater Using Whole Bacterial Cells: A Review. Dyes Pigm. 2003, 58, 179–196. DOI: 10.1016/S0143-7208(03)00064-0.
  • Liu, Y.; Li, C.; Bao, J.; Wang, X.; Yu, W.; Shao, L. Degradation of Azo Dyes with Different Functional Groups in Simulated Wastewater by Electrocoagulation. Water. 2022, 14, 123. DOI: 10.3390/w14010123.
  • Vu, T. P. T.; Tran, D.-T.; Pham, Q.-T. Novel CdS/MIL-88A Heterojunction Coupled with H2O2/Air-Nanobubbles for Enhanced Visible-Light Driven Photocatalytic Performance. J. Clean. Prod. 2022, 380, 135007. DOI: 10.1016/j.jclepro.2022.135007.
  • Kossar, S.; Banu, I. B. S.; Aman, N.; Amiruddin, R. Investigation on Photocatalytic Degradation of Crystal Violet Dye Using Bismuth Ferrite Nanoparticles. J. Dispers. Sci. Technol. 2021, 42, 2053–2062. DOI: 10.1080/01932691.2020.1806861.
  • Le, T. T. T.; Nguyen, T. L.; Tran, D. T.; Nguyen, V. N. Enhanced Photocatalytic Degradation of Rhodamine B Using C/Fe Co-Doped Titanium Dioxide Coated on Activated Carbon. J. Chem. 2019, 2019, 2949316. DOI: 10.1155/2019/2949316.
  • Wang, B.-Y.; Yuan, J.; Guo, J.; Zhang, F.-Q. Synthesis of Fe-MOFs/h-CeO2 Hollow Micro-Spheres and Their Highly Efficient Photocatalytic Degradation of RhB. J. Dispers. Sci. Technol. 2022, 44, 1–11. DOI: 10.1080/01932691.2021.2022490.
  • Le, T. S.; Dang, N. M.; Tran, D. T. Performance of Coupling Electrocoagulation and Biofiltration Processes for the Treatment of Leachate from the Largest Landfill in Hanoi, Vietnam: Impact of Operating Conditions. Sep. Purif. Technol. 2021, 255, 117677. DOI: 10.1016/j.seppur.2020.117677.
  • Lima, J. P. P.; Tabelini, C. H. B.; Ramos, M. D. N.; Aguiar, A. Kinetic Evaluation of Bismarck Brown Y Azo Dye Oxidation by Fenton Processes in the Presence of Aromatic Mediators. Water Air Soil Pollut. 2021, 232, 321., DOI: 10.1007/s11270-021-05258-1.
  • Tran, D. T.; Ha, T. M. T.; Nguyen, T. A. H.; Dang, V. V.; Dao, V. D. Facile Preparation of Reduced Graphene Oxide for Removing Tetracycline from Water: Kinetics and Thermodynamics Studies. Sep. Sci. Technol. 2022, 57, 1872–1883. DOI: 10.1080/01496395.2021.2013891.
  • Das, P.; Nisa, S.; Debnath, A.; Saha, B. Enhanced Adsorptive Removal of Toxic Anionic Dye by Novel Magnetic Polymeric Nanocomposite: Optimization of Process Parameters. J. Dispers. Sci. Technol. 2020, 43, 880–895. DOI: 10.1080/01932691.2020.1845958.
  • Corda, N.; Kini, M. S. Recent Studies in Adsorption of Pb(II), Zn(II) and Co(II) Using Conventional and Modified Materials: A Review. Sep. Sci. Technol. 2020, 55, 2679–2698. DOI: 10.1080/01496395.2019.1652651.
  • Othmani, A.; John, J.; Rajendran, H.; Mansouri, A.; Sillanpää, M.; Chellam, P. V. Biochar and Activated Carbon Derivatives of Lignocellulosic Fibers towards Adsorptive Removal of Pollutants from Aqueous Systems: Critical Study and Future Insight. Sep. Purif. Technol. 2021, 274, 119062. DOI: 10.1016/j.seppur.2021.119062.
  • Nguyen, V. N.; Tran, D. T.; Nguyen, M. T.; Le, T. T. T.; Ha, M. N.; Nguyen, M. V.; Pham, T. D. Enhanced Photocatalytic Degradation of Methyl Orange Using ZnO/Graphene Oxide Nanocomposites. Res. Chem. Intermed. 2018, 44, 3081–3095. DOI: 10.1007/s11164-018-3294-3.
  • Palanisamy, G.; Bhuvaneswari, K.; Srinivasan, M.; Vignesh, S.; Elavarasan, N.; Venkatesh, G.; Pazhanivel, T.; Ramasamy, P. Two-Dimensional g-C3N4 Nanosheets Supporting Co3O4-V2O5 Nanocomposite for Remarkable Photodegradation of Mixed Organic Dyes Based on a Dual Z-Scheme Photocatalytic System. Diam. Relat. Mater. 2021, 118, 108540. DOI: 10.1016/j.diamond.2021.108540.
  • Singh, N.B.; Nagpal, G.; Agrawal, S.; Rachna. Water Purification by Using Adsorbents: A Review. Environ. Technol. Innov. 2018, 11, 187–240. DOI: 10.1016/j.eti.2018.05.006.
  • Le, T. T. T.; Tran, D. T. Photocatalytic Degradation of Rhodamine B by C and N Codoped TiO2 Nanoparticles under Visible-Light Irradiation. J. Chem. 2020, 2020, 1–8. DOI: 10.1155/2020/4310513.
  • Le, T. T. T.; Tran, D. T.; Danh, T. H. Remarkable Enhancement of Visible Light Driven Photocatalytic Performance of TiO2 by Simultaneously Doping with C, N, and S. Chem. Phys. 2021, 545, 111144. DOI: 10.1016/j.chemphys.2021.111144.
  • Toghan, A.; El-Lateef, H.; M. A.; Taha, K. K.; Modwi, A. Mesoporous TiO2@g-C3N4 Composite: Construction, Characterization, and Boosting Indigo Carmine Dye Destruction. Diam. Relat. Mater. 2021, 118, 108491. DOI: 10.1016/j.diamond.2021.108491.
  • Szilágyi, I. M.; Fórizs, B.; Rosseler, O.; Szegedi, Á.; Németh, P.; Király, P.; Tárkányi, G.; Vajna, B.; Varga-Josepovits, K.; László, K.; et al. WO3 Photocatalysts: Influence of Structure and Composition. J. Catal. 2012, 294, 119–127. DOI: 10.1016/j.jcat.2012.07.013.
  • Adhikari, S.; Mandal, S.; Sarkar, D.; Kim, D.-H.; Madras, G. Kinetics and Mechanism of Dye Adsorption on WO3 Nanoparticles. Appl. Surf. Sci. 2017, 420, 472–482. DOI: 10.1016/j.apsusc.2017.05.191.
  • Liu, X.; Xu, J.; Ni, Z.; Wang, R.; You, J.; Guo, R. Adsorption and Visible-Light-Driven Photocatalytic Properties of Ag3PO4/WO3 Composites: A Discussion of the Mechanism. Chem. Eng. J. 2019, 356, 22–33. DOI: 10.1016/j.cej.2018.09.001.
  • Nguyen, T. T. T.; Bach, L. G.; Nguyen, T. H.; Pham, T. D.; Nguyen, T.; D. T.; Tran, Nguyen, M. V.; Nguyen, V. N. The Superior Photocatalytic Activity of Nb Doped TiO2/g-C3N4 Direct Z-Scheme System for Efficient Conversion of CO2 into Valuable Fuels. J. Colloid Interf. Sci. 2019, 540, 1–8. DOI: 10.1016/j.jcis.2019.01.005.
  • Truc, N. T. T.; Duc, D. S.; Van Thuan, D.; Tahtamouni, T. A.; Pham, T.-D.; Hanh, N. T.; Tran, D. T.; Nguyen, M. V.; Dang, N. M.; Le Chi, N. T. P.; Nguyen, V. N. The Advanced Photocatalytic Degradation of Atrazine by Direct Z-Scheme Cu Doped ZnO/g-C3N4. Appl. Surf. Sci. 2019, 489, 875–882. DOI: 10.1016/j.apsusc.2019.05.360.
  • Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 Based Noble-Metal-Free Photocatalyst Systems: A Review. Appl. Catal. B Environ. 2017, 206, 556–588. DOI: 10.1016/j.apcatb.2017.01.061.
  • Zhao, G. Q.; Zou, J.; Hu, J.; Long, X.; Jiao, F. P. A Critical Review on Graphitic Carbon Nitride (g-C3N4)-Based Composites for Environmental Remediation. Sep. Purif. Technol. 2021, 279, 119769. DOI: 10.1016/j.seppur.2021.119769.
  • Yu, Y.; Xu, W.; Fang, J.; Chen, D.; Pan, T.; Feng, W.; Liang, Y.; Fang, Z. Soft-Template Assisted Construction of Superstructure TiO2/SiO2/g-C3N4 Hybrid as Efficient Visible-Light Photocatalysts to Degrade Berberine in Seawater via an Adsorption-Photocatalysis Synergy and Mechanism Insight. Appl. Catal. B Environ. 2020, 268, 118751. DOI: 10.1016/j.apcatb.2020.118751.
  • Hu, X.; Yu, Y.; Chen, D.; Xu, W.; Fang, J.; Liu, Z.; Li, R.; Yao, L.; Qin, J.; Fang, Z. Anatase/Rutile Homojunction Quantum Dots Anchored on g-C3N4 Nanosheets for Antibiotics Degradation in Seawater Matrice via Coupled Adsorption-Photocatalysis: Mechanism Insight and Toxicity Evaluation. Chem. Eng. J. 2022, 432, 134375. DOI: 10.1016/j.cej.2021.134375.
  • Kaur, H.; Singh, S.; Pal, B. Impact of g-C3N4 Loading on NiCo LDH for Adsorptive Removal of Anionic and Cationic Organic Pollutants from Aqueous Solution. Korean J. Chem. Eng. 2021, 38, 1248–1259. DOI: 10.1007/s11814-021-0784-6.
  • Sahoo, S. K.; Padhiari, S.; Biswal, S. K.; Panda, B. B.; Hota, G. Fe3O4 Nanoparticles Functionalized GO/g-C3N4 Nanocomposite: An Efficient Magnetic Nanoadsorbent for Adsorptive Removal of Organic Pollutants. Mater. Chem. Phys. 2020, 244, 122710. DOI: 10.1016/j.matchemphys.2020.122710.
  • Zhang, L.; Hao, X.; Li, Y.; Jin, Z. Performance of WO3/g-C3N4 Heterojunction Composite Boosting with NiS for Photocatalytic Hydrogen Evolution. Appl. Surf. Sci. 2020, 499, 143862. DOI: 10.1016/j.apsusc.2019.143862.
  • Chen, G.; Bian, S.; Guo, C. Y.; Wu, X. Insight into the Z-Scheme Heterostructure WO3/g-C3N4 for Enhanced Photocatalytic Degradation of Methyl Orange. Mater. Lett. 2019, 236, 596–599. DOI: 10.1016/j.matlet.2018.11.010.
  • Jia, J.; Jiang, C.; Zhang, X.; Li, P.; Xiong, J.; Zhang, Z.; Wu, T.; Wang, Y. Urea-Modified Carbon Quantum Dots as Electron Mediator Decorated g-C3N4/WO3 with Enhanced Visible-Light Photocatalytic Activity and Mechanism Insight. Appl. Surf. Sci. 2019, 495, 143524. DOI: 10.1016/j.apsusc.2019.07.266.
  • Truong, H. B.; Huy, B. T.; Ray, S. K.; Lee, Y. I.; Cho, J.; Hur, J. H2O2-Assisted Photocatalysis for Removal of Natural Organic Matter Using Nanosheet C3N4-WO3 Composite under Visible Light and the Hybrid System with Ultrafiltration. Chem. Eng. J. 2020, 399, 125733. DOI: 10.1016/j.cej.2020.125733.
  • Luu, T.; L. A.; Neto, M. M.; Pham, V. T.; Nguyen, N. T.; Nguyen, T. T. M.; Nguyen, X. S.; Nguyen, C. T. In Situ g-C3N4@ZnO Nanocomposite: One-Pot Hydrothermal Synthesis and Photocatalytic Performance under Visible Light Irradiation. Adv. Mater. Sci. Eng. 2021, 2021, 1–10. DOI: 10.1155/2021/6651633.
  • Zhang, L.; Ma, Z. Porous g-C3N4 with Enhanced Adsorption and Visible-Light Photocatalytic Performance for Removing Aqueous Dyes and Tetracycline Hydrochloride. Chin. J. Chem. Eng. 2018, 26, 753–760. DOI: 10.1016/j.cjche.2017.10.010.
  • Zhao, H.; Zhao, H.; Wu, L.-C.; Xu, H.-Y. Adsorption and Photocatalysis of Organic Dyes by g-C3N4 in Situ Doped with S. Sci. Adv. Mater. 2016, 8, 1408–1416. DOI: 10.1166/sam.2016.2731.
  • Modwi, A.; Khezami, L.; Ghoniem, M. G.; Nguyen-Tri, P.; Baaloudj, O.; Guesmi, A.; AlGethami, F. K.; Amer, M. S.; Assadi, A. A. Superior Removal of Dyes by Mesoporous MgO/g-C3N4 Fabricated through Ultrasound Method: Adsorption Mechanism and Process Modelling. Environ. Res. 2022, 205, 112543. DOI: 10.1016/j.envres.2021.112543.
  • Chen, Z.; Zhang, S.; Liu, Y.; Alharbi, N. S.; Rabah, S. O.; Wang, S.; Wang, X. Synthesis and Fabrication of g-C3N4-Based Materials and Their Application in Elimination of Pollutants. Sci. Total Environ. 2020, 731, 139054. DOI: 10.1016/j.scitotenv.2020.139054.
  • Cuong, L. M.; Duc, B. H.; Thang, P. V.; Mai, N. T. T.; Chinh, H. D.; Tu, N. C.; Anh, L. T. L. Kinetics and Adsorption Model of Methylene Blue on [email protected] Nanoplate Composite. Int. J. Nanosci. 2021, 20, 1–10. DOI: 10.1142/S0219581X21500459.
  • Vu, T. P. T.; Tran, D. T.; Dang, V. C. Novel N, C, S-TiO2/WO3/rGO Z-Scheme Heterojunction with Enhanced Visible-Light Driven Photocatalytic Performance. J. Colloid Interf. Sci. 2022, 610, 49–60. DOI: 10.1016/j.jcis.2021.12.050.
  • Chacón, C.; Rodríguez-Pérez, M.; Oskam, G.; Rodríguez-Gattorno, G. Synthesis and Characterization of WO3 Polymorphs: Monoclinic, Orthorhombic and Hexagonal Structures. J. Mater. Sci: Mater. Electron. 2015, 26, 5526–5531. DOI: 10.1007/s10854-014-2053-5.
  • Mamba, G.; Mishra, A. K. Graphitic Carbon Nitride (g-C3N4) Nanocomposites: A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation. Appl. Catal. B Environ. 2016, 198, 347–377. DOI: 10.1016/j.apcatb.2016.05.052.
  • Luu, T. L. A.; Neto, M. M.; Pham, V. T.; Nguyen, T. T. M.; Nguyen, X. S.; Nguyen, C. T. Optical and Photocatalytic Properties of in-Situ Gr@ZnO Microspindle Composites Prepared by Hydrothermal Method. J. Nanosci. Nanotechnol. 2021, 21, 2653–2659. DOI: 10.1166/jnn.2021.19104.
  • Pham, N. L.; Luu, T. L. A.; Nguyen, H. L.; Nguyen, C. T. Effects of Acidity on the Formation and Adsorption Activity of Tungsten Oxide Nanostructures Prepared via the Acid Precipitation Method. Mater. Chem. Phys. 2021, 272, 125014. DOI: 10.1016/j.matchemphys.2021.125014.
  • Nguyen, C. T.; Pham, N. L.; Nguyen, T. T.; Do, D. T.; Luu, T. L. A. Effect of Reaction Time on the Phase Transformation and Photocatalytic Activity under Solar Irradiation of Tungsten Oxide Nanocuboids Prepared via Facile Hydrothermal Method. Phase Transit. 2021, 94, 651–666. DOI: 10.1080/01411594.2021.1954646.
  • Chandrababu, P.; Thankarajan, J.; Sukumaran, V.; Raghavan, R. Decomposition of Ammonium Perchlorate: Exploring Catalytic Activity of Nanocomposites Based on Nano Cu/Cu2O Dispersed on Graphitic Carbon Nitride. Thermochim. Acta. 2020, 691, 178720. DOI: 10.1016/j.tca.2020.178720.
  • Cui, L.; Ding, X.; Wang, Y.; Shi, H.; Huang, L.; Zuo, Y.; Kang, S. Facile Preparation of Z-Scheme WO3/g-C3N4 Composite Photocatalyst with Enhanced Photocatalytic Performance under Visible Light. Appl. Surf. Sci. 2017, 391, 202–210. DOI: 10.1016/j.apsusc.2016.07.055.
  • Periasamy, P.; Krishnakumar, T.; Sathish, M.; Chavali, M.; Siril, P. F.; Devarajan, V. P. Structural and Electrochemical Studies of Tungsten Oxide (WO3) Nanostructures Prepared by Microwave Assisted Wet-Chemical Technique for Supercapacitor. J. Mater. Sci.: Mater. Electron. 2018, 29, 6157–6166. DOI: 10.1007/s10854-018-8590-6.
  • Feng, M.; Liu, Y.; Zhao, Z.; Huang, H.; Peng, Z. The Preparation of Fe Doped Triclinic-Hexagonal Phase Heterojunction WO3 Film and Its Enhanced Photocatalytic Reduction of Cr (VI). Mater. Res. Bull. 2019, 109, 168–174. DOI: 10.1016/j.materresbull.2018.05.007.
  • Yu, W.; Xu, D.; Peng, T. Enhanced Photocatalytic Activity of g-C3N4 for Selective CO2 Reduction to CH3OH via Facile Coupling of ZnO: A Direct Z-Scheme Mechanism. J. Mater. Chem. A. 2015, 3, 19936–19947. DOI: 10.1039/C5TA05503B.
  • Sungpanich, J.; Thongtem, T.; Thongtem, S. Photocatalysis of WO3 Nanoplates Synthesized by Conventional-Hydrothermal and Microwave-Hydrothermal Methods and of Commercial WO3 Nanorods. J. Nanomater. 2014, 2014, 1–8. DOI: 10.1155/2014/739251.
  • Tran, D.-T.; Pham, T.-D.; Dang, V.-C.; Pham, T.-D.; Nguyen, M.-V.; Dang, N.-M.; Ha, M.-N.; Nguyen, V.-N.; Nghiem, L. D. A Facile Technique to Prepare MgO-Biochar Nanocomposites for Cationic and Anionic Nutrient Removal. J. Water Process. Eng. 2022, 47, 102702. DOI: 10.1016/j.jwpe.2022.102702.
  • Tran, D.-T.; Nguyen, T.-H.; Doan, T.-H.; Dang, V.-C.; Nghiem, L. D. Removal of Direct Blue 71 and Methylene Blue from Water by Graphene Oxide: Effects of Charge Interaction and Experimental Parameters. J. Dispers. Sci. Technol. 2022, 1–12. DOI: 10.1080/01932691.2022.2102034.
  • Almeida, C. A. P.; Debacher, N. A.; Downs, A. J.; Cottet, L.; Mello, C. A. D. Removal of Methylene Blue from Colored Effluents by Adsorption on Montmorillonite Clay. J. Colloid Interf. Sci. 2009, 332, 46–53. DOI: 10.1016/j.jcis.2008.12.012.
  • Gan, Q. Y.; Shi, W. L.; Xing, Y. J.; Hou, Y. A Polyoxoniobate/g-C3N4 Nanoporous Material with High Adsorption Capacity of Methylene Blue from Aqueous Solution. Front. Chem. 2018, 6, 7. DOI: 10.3389/fchem.2018.00007.
  • Wang, S.; Boyjoo, Y.; Choueib, A. A Comparative Study of Dye Removal Using Fly Ash Treated by Different Methods. Chemosphere. 2005, 60, 1401–1407. DOI: 10.1016/j.chemosphere.2005.01.091.
  • Ayad, M. M.; El-Nasr, A. A. Adsorption of Cationic Dye (Methylene Blue) from Water Using Polyaniline Nanotubes Base. J. Phys. Chem. C. 2010, 114, 14377–14383. DOI: 10.1021/jp103780w.
  • El-Halwany, M. M. Study of Adsorption Isotherms and Kinetic Models for Methylene Blue Adsorption on Activated Carbon Developed from Egyptian Rice Hull (Part II). Desalination. 2010, 250, 208–213. DOI: 10.1016/j.desal.2008.07.030.
  • Pi, L.; Jiang, R.; Zhou, W.; Zhu, H.; Xiao, W.; Wang, D.; Mao, X. g-C3N4 Modified Biochar as an Adsorptive and Photocatalytic Material for Decontamination of Aqueous Organic Pollutants. Appl. Surf. Sci. 2015, 358, 231–239. DOI: 10.1016/j.apsusc.2015.08.176.
  • Lonappan, L.; Rouissi, T.; Das, R. K.; Brar, S. K.; Ramirez, A. A.; Verma, M.; Surampalli, R. Y.; Valero, J. R. Adsorption of Methylene Blue on Biochar Microparticles Derived from Different Waste Materials. Waste Manage. 2016, 49, 537–544. DOI: 10.1016/j.wasman.2016.01.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.