224
Views
7
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Integration of input shaping technique with interpolation for vibration suppression of servo-feed drive system

, , &
Pages 284-295 | Received 01 Nov 2016, Accepted 23 Mar 2017, Published online: 23 Apr 2017
 

Abstract

It is essential to suppress vibrations of the feed drive system in order to achieve high speed and high precision machining. To analyze the dynamic response of the feed drive system, a more complete model is derived in this paper which considers the bed, longitudinal and torsional modes. The dynamic model is represented by the block diagram and is incorporated with servo controls to form a closed-loop system. To alleviate vibrations of the servo-feed drive system, a full order modified input shaping with zero vibration (FMISZV) algorithm integrated into the CNC interpolator is developed. The performance of vibration suppression using the FMISZV is compared to those of conventional input shapers, such as zero vibration with derivation (ZVD) and conventional linear acceleration/deceleration (Acc/Dec) interpolator (CLAI). It is shown that the FMISZV not only has the notch filter effect, but also exhibits low-pass filter behavior for high frequency modes. Simulation and experimental results demonstrate that the FMISZV can outperform the ZVD and CLAI.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.