125
Views
3
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Visualization of counter pressure mechanism in gas-assisted injection molding process

, , , , &
Pages 459-470 | Received 21 Apr 2016, Accepted 19 Jul 2017, Published online: 09 Aug 2017
 

Abstract

Gas-assisted injection molding (GAIM) refers to injecting gas into the short shot melt during the filling stage. Compressed gas is used as the medium to push the melt and to provide the packing pressure. In GAIM, the hollow area and penetration length are the main factors that will affect the quality of molded parts. This study has applied a Gas Counter Pressure (GCP) mechanism and has discussed the effect of GCP in the GAIM process with in-mold visualization of this complex molding flow. This study introduces a counter pressure mechanism in a thick paper-clip-shaped cavity design. The flow field under different counter pressure conditions is observed by high-speed photography, the fiber orientations are analyzed with SEM, and the affected penetration length and hollow area are measured relatively. The experimental results show that when the GCP is applied to GAIM, although the hollow area is reduced, the penetration length will be increased, so as to make the quality of molded part more uniform and reduce the shrinkage. And a quantitative measuring method of two-stage penetration time span is proposed to get more in-depth discussion about the interactions between GCP and GAIM.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.