148
Views
6
CrossRef citations to date
0
Altmetric
Article

Liquid crystalline polymers XVI*. Thermotropic liquid crystalline copoly(arylidene-ether)/TiO2 Nanocomposites: synthesis, characterisation and applications

, , &
Pages 1734-1746 | Received 29 Dec 2018, Accepted 16 Mar 2019, Published online: 09 Apr 2019
 

ABSTRACT

Polymer nanocomposites are already a part of many important worldwide businesses. Among many nanocomposite precursors, titanium dioxide (TiO2) nanopowder is increasingly being investigated due to its special properties. In this work, the feasibility of synthesising a new series of materials, copoly(arylidene-ether)/titanium dioxide nanocomposites, using in-situ copolymerisation technique has been investigated. This can be performed by the interaction of both cyclohexanone and 4-tert-butylcyclohexanone monomers with 4,4′-diformyl-2,2′-dimethoxy-α,ω-diphenoxyalkanes Ia–e, respectively, using different additions of titanium dioxide-P25. The structure of the prepared nanocomposites IIa–e/TiO2 (0.2–3.0%) was confirmed by elemental analysis (energy dispersive X-ray spectroscopy) and spectral data (Fourier transform-infrared [FT-IR]). FT-IR verified the dispersion of nanofillers in the copolymer. Then, the characterisation and applications of these nanocomposites are extensively discussed depending on the investigation of how the addition of titanium dioxide nanoparticles affected on their properties using various techniques, such as X-ray diffraction, SEM, transmission electron microscopy, Water Contact Angle (WCA), thermogravimetric analysis, differential thermogravimetric, differential thermal analysis (DTA), polarising optical microscope and UV–vis absorption spectroscopy. The nanoparticles affected on the copolymer thermal behaviour in different ways (discrepancy results) depending on how these nanoparticles are dispersed in the copolymer matrix. UV–vis absorption spectra displayed a decrease in the optical band gap of some nanocomposites, which resulted from the addition of titanium dioxide to these copolymers, and this can improve the efficiency of them as organic emitting materials.

ABSTRACT

Acknowledgements

The authors are grateful to Research Funding Unit at faculty of Science, Assiut University (Egypt), for the financial support. The authors declare that they have no conflicts of interest.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed here.

Additional information

Funding

The authors are grateful to Research Funding Unit at faculty of Science, Assiut University (Egypt), for the financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.