148
Views
6
CrossRef citations to date
0
Altmetric
Article

Liquid crystalline polymers XVI*. Thermotropic liquid crystalline copoly(arylidene-ether)/TiO2 Nanocomposites: synthesis, characterisation and applications

, , &
Pages 1734-1746 | Received 29 Dec 2018, Accepted 16 Mar 2019, Published online: 09 Apr 2019

References

  • Saujanya C, Radhakrishnan S. Structure development and crystallization behaviour of PP/nanoparticulate composite. Polymer. 2001;42:6723–6731.
  • Osipov MA, Kudryavtsev YV, Ushakova AS, et al. Orientational ordering of nanorods of different length in diblock copolymers. Liq Cryst. 2018;45:2065–2073.
  • Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta. 2011;523:1–24.
  • Chen F, Cong YH, Zhang BY, et al. Preparation of highly exfoliated epoxy/clay nanocomposites by clay grafted with liquid crystalline epoxy. Liq Cryst. 2017;44:453–463.
  • Calebrese C, Hui L, Schadler LS, et al. A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans Dielectr Electr Insul. 2011;18:938–945.
  • Kumar SK, Krishnamoorti R. Nanocomposites: structure, phase behavior, and properties. Ann Rev Chem Biomol Eng. 2010;1:37–58.
  • Winey KI, Kashiwagi T, Mu M. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull. 2007;32:348–353.
  • Kango S, Kalia S, Celli A, et al. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci. 2013;38:1232–1261.
  • Wang Z, Lan T, Pinnavaia TJ. Hybrid organic− inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid (Magadiite). Chem Mater. 1996;8:2200–2204.
  • Tang Y, Gao P, Ye L, et al. Organoclay/thermotropic liquid crystalline polymer nanocomposites. Part I: effects of concentration on morphology, liquid crystallinity and thermal properties. e-Polymers. 2012;12:84–95.
  • Lin F Preparation and characterization of polymer TiO2 nanocomposites via in-situ polymerization. Thesis, University of Waterloo. 2006.
  • Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim Acta. 2011;523:25–45.
  • Chen GX, Yang L, Liu X, et al. Main-chain biodegradable liquid crystal derived from cholesteryl derivative end-capped poly(trimethylene carbonate): synthesis and characterisation. Liq Cryst. 2017;44:1050–1058.
  • Xu XX, Yang L, Chen G, et al. Main-chain biodegradable liquid crystal based on cholesteryl end-capped polycarbonate copolymers. Liq Cryst. 2017;44:925–932.
  • Aly KI, Abdel-Rahman MA, Tolba AH. Liquid crystalline polymers XV. Synthesis, properties and cytotoxicity of photoresponsive thermotropic liquid crystalline copoly(arylidene-ether)s based on 4-tert-butylcyclohexanone and cyclohexanone moieties in the main chain. Liq Cryst. 2018;45:187–203.
  • Aly KI, Sayed MM. Liquid crystalline polymers XIV.main chain thermotropic copoly (arylidene–ether)s based on 4-methyl-cyclohexanone and 4-teritary butyl-cyclohexanone moieties linked with polymethylene spacers. Liq Cryst. 2014;41:67–81.
  • Aly KI, Hussien MA, Sayed MM. Liquid crystalline polymers XII.Main chain thermotropic poly (arylidene – ether)s containing 4-teriary-butyl- cyclohexanone moiety linked with polymethylene spacers. Liq Cryst. 2013;40:1570–1580.
  • Al-Muaikel NS, Aly KI. Liquid crystalline polymers XIII. Main chain thermotropic copoly (arylidene – ether)s containing 4- teriary butyl-cyclohexanone moiety linked with polymethylene spacers. Open J Org Polym Mater. 2013;3:19–26.
  • Aly KI, Elkhawaga AM, Hussein MA, et al. Liquid crystalline polymers XI. Main chain thermotropic poly (arylidene – ether)s containing methyl-cyclohexanone moiety linked with polymethylene spacers. Liq Cryst. 2013;40:711–725.
  • Aly KI, El-Kashef HS. Liquid crystalline polymers 4. Thermotropic liquid crystalline poly(arylidene - ether)s and copolymers containing N-methylpiperidone linked to the main chain through spacers of various length. J Macromol Sci Chem A. 2001;38:785–806.
  • Aly KI, Hammam AS. Liquid Crystalline Polymers 1. Main Chain Thermotropic Poly(arylidene-ether)s containing Cyclopentanone Moiety Linked with Polymethylene Spacers. Eur Polym J. 2000;36:1933–1942.
  • Aly KI. Liquid crystalline polymers 3. Synthesis and liquid crystal properties of thermotropic poly(arylidene-ether)s and copolymers containing cycloalkanones moiety in the polymer backbone. J Macromol Sci Chem A. 2000;37:93–115.
  • Aly KI. Liquid crystalline polymers 2. Synthesis and thermotropic studies of novel poly(arylidene-ether)s. Containing cyclopentanone moiety in the main chain. High Perform Polym. 1999;11:437–452.
  • Shao S-Y, Ding J-Q, Wang L-X. New applications of poly(arylene ether)s in organic light-emitting diodes. CCL. 2016;27:1201–1208.
  • Martinez-Miranda LJ, Romero-Hasler P, Meneses-Franco A, et al. Incommensurate structures investigated by X-ray studies of electropolymerised methacrylic monomer with TiO2 nanoparticles. Liq Cryst. 2017;44:1549–1558.
  • Rozycka A, Iwan A, Filapek M, et al. Study of TiO2 in anatase form on selected properties of new aliphatic-aromatic imines with bent shape towards organic electronics. Liq Cryst. 2018;45:831–843.
  • Bezborodov VS, Mikhalyonok SG, Kuz’menok NM, et al. Anisotropic derivatives of (-)-L-lactic acid and their nanocomposites. Liq Cryst. 2018;45:1223–1233.
  • Nakayama N, Hayashi T. Preparation and characterization of poly (l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab. 2007;92:1255–1264.
  • Grala M, Bartczak Z, Różański A. Morphology, thermal and mechanical properties of polypropylene/SiO2 nanocomposites obtained by reactive blending. J Polym Res. 2016;23:25.
  • Yang -C-C, Wu G. Study of microporous PVA/PVC composite polymer membrane and it application to MnO 2 capacitors. Mater Chem Phys. 2009;114:948–955.
  • Mallakpour S, Zhiani M, Barati A, et al. Improving the direct methanol fuel cell performance with poly (vinyl alcohol)/titanium dioxide nanocomposites as a novel electrolyte additive. Int J Hydrogen Energy. 2013;38:12418–12426.
  • Yu J, Su Y, Cheng B, et al. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. J Mol Catal A Chem. 2006;258:104–112.
  • Parveen AS, Thirukumaran P, Sarojadevi M. Fabrication of highly durable hydrophobic PBZ/SiO2 surfaces. RSC Adv. 2015;5:43601–43610.
  • Eskizeybek V, Sarı F, Gülce H, et al. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B Environ. 2012;119:197–206.
  • Grala M, Bartczak Z, Różański A. Morphology, thermal and mechanical properties of polypropylene/SiO2 nanocomposites obtained by reactive blending. J Polym Res. 2016;23:25.
  • Topnani N, Hamplová V, Kašpar M, et al. Synthesis, characterisation and functionalisation of ZnO and TiO2 nanostructures: used as dopants in liquid crystal polymers. Liq Cryst. 2014;41(1):91–100.
  • Kong X, Hu Y, Wang X, et al. Effect of surface morphology on wettability conversion. J Adv Ceram. 2016;5(4):284–290.
  • Agag T, Tsuchiya H, Takeichi T. Novel organic–inorganic hybrids prepared from polybenzoxazine and titania using sol–gel process. Polymer. 2004;45(23):7903–7910.
  • Fortunato G, Tenniche A, Gottardo L, et al. Development of poly-(ethylene terephthalate) masterbatches incorporating highly dispersed TiO 2 nanoparticles: investigation of morphologies by optical and rheological procedures. Eur Polym J. 2014;57:75–82.
  • Wang M, Chen C, Ma J, et al. Preparation of superhydrophobic cauliflower-like silica nanospheres with tunable water adhesion. J Mater Chem. 2011;21(19):6962–6967.
  • Parveen AS, Thirukumaran P, Sarojadevi M. Fabrication of highly durable hydrophobic PBZ/SiO 2 surfaces. RSC Adv. 2015;5:43601–43610.
  • Vatanpour V, Madaeni SS, Khataee AR, et al. TiO 2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination. 2012;292:19–29.
  • Nakayama N, Hayashi T. Preparation and characterization of poly (l-lactic acid)/TiO 2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab. 2007;92:1255–1264.
  • Laachachi A, Ferriol M, Cochez M, et al. The catalytic role of oxide in the thermooxidative degradation of poly (methyl methacrylate)–tiO2 nanocomposites. Polym Degrad Stab. 2008;93:1131–1137.
  • Fortunato G, Tenniche A, Gottardo L, et al. Development of poly-(ethylene terephthalate) masterbatches incorporating highly dispersed TiO2 nanoparticles: investigation of morphologies by optical and rheological procedures. Eur Polym J. 2014;57:75–82.
  • Sakthivel P, Kannan P. Thermotropic liquid crystalline‐cum‐photocrosslinkable poly (benzylidene arylphosphate ester) s containing the cyclopentanone moiety. Liq Cryst. 2006;33:341–351.
  • Muthusamy A, Balaji K, Murugavel SC. Synthesis, thermal, and photocrosslinking studies of thermotropic liquid crystalline poly (benzylidene‐ether) esters containing α, β‐unsaturated ketone moiety in the main chain. J Polym Sci Part A: Polym Chem. 2013;51:1707–1715.
  • Balaji K, Murugavel S. Investigation on dual properties of photosensitive thermotropic liquid‐crystalline poly (benzylidene‐ether) s containing alkanones and methylene spacers in the main chain. J Polym Sci Part A: Polym Chem. 2012;50:1696–1706.
  • Zhang G, Jiang C, Su C, et al. Liquid‐crystalline copolyester/clay nanocomposites. J Appl Polym Sci. 2003;89:3155–3159.
  • Świst A, Sołoducho J. Organic semiconductors–materials of the future? CHEMIK nauka- technika-rynek. 2012;1:289–296.
  • Dharma J, Pisal A, Shelton C Simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NIR spectrometer. Application Note Shelton, CT: PerkinElmer, 2009.
  • Ghadami A, Ghadam J, Faramarzi M. Structural and optical studies of polyamide- 66/CaCO3 composites. Int J Adv Eng Sci. 2014;4:31.
  • Limaye MV, Chen S, Lee C-Y, et al. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques. Sci Rep. 2015;5:11466.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.