363
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Depth-Dependent Out-of-Plane Young’s Modulus of the Human Cornea

, , , &
Pages 595-604 | Received 13 Jul 2017, Accepted 24 Nov 2017, Published online: 28 Dec 2017
 

ABSTRACT

Purpose/Aim: Despite their importance in accurate mechanical modeling of the cornea, the depth-dependent material properties of the cornea have only been partially elucidated. In this work, we characterized the depth-dependent out-of-plane Young’s modulus of the central and peripheral human cornea with high spatial resolution.

Materials and Methods: Central and peripheral corneal buttons from human donors were subjected to unconfined axial compression followed by stress relaxation for 30 min. Sequences of fluorescent micrographs of full-thickness corneal buttons were acquired throughout the experiment to enable tracking of fluorescently labeled stromal keratocyte nuclei and measurements of depth-dependent infinitesimal strains. The nominal (gross) out-of-plane Young’s modulus and drained Poisson’s ratio for each whole specimen was computed from the equilibrium stress and overall tissue deformation. The depth-dependent (local) out-of-plane Young’s modulus was computed from the equilibrium stress and local tissue strain based on an anisotropic model (transverse isotropy).

Results: The out-of-plane Young’s modulus of the cornea exhibited a strong dependence on in-plane location (peripheral versus central cornea), but not depth. The depth-dependent out-of-plane Young’s modulus of central and peripheral specimens ranged between 72.4–102.4 kPa and 38.3–58.9 kPa. The nominal out-of-plane Young’s modulus was 87 ± 41.51 kPa and 39.9 ± 15.28 kPa in the central and peripheral cornea, while the drained Poisson’s ratio was 0.05 ± 0.02 and 0.07 ± 0.04.

Conclusions: The out-of-plane Young’s modulus of the cornea is mostly independent of depth, but not in-plane location (i.e. central vs. peripheral). These results may help inform more accurate finite element computer models of the cornea.

Acknowledgements

We thank SightLife and the donors who made this work possible, as well as their families.

Declaration of Interests

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Supplemental data

Supplemental data for this article can be access on the publisher’s website.

Additional information

Funding

The study was funded by a startup grant (Buckley) from the University of Rochester.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.