363
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Depth-Dependent Out-of-Plane Young’s Modulus of the Human Cornea

, , , &
Pages 595-604 | Received 13 Jul 2017, Accepted 24 Nov 2017, Published online: 28 Dec 2017

References

  • Morishige N, Shin-Gyou-Uchi R, Azumi H, Ohta H, Morita Y, Yamada N, Kimura K, Takahara A, Sonoda K-H. Quantitative analysis of collagen lamellae in the normal and keratoconic human cornea by second harmonic generation imaging microscopy. Invest Ophthalmol Vis Sci. 2014;55:8377–85. doi:10.1167/iovs.14-15348.
  • Abass A, Hayes S, White N, Sorensen T, Meek KM. Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution. J R Soc Interface. 2015;12:20140717.
  • Hatami-Marbini H. Hydration dependent viscoelastic tensile behavior of cornea. Ann Biomed Eng. 2014;42:1740–48. doi:10.1007/s10439-014-0996-6.
  • Elsheikh A, Kassem W, Jones SW. Strain-rate sensitivity of porcine and ovine corneas. Acta Bioeng Biomech. 2011;13:25–36.
  • Yoo L, Reed J, Shin A, Kung J, Gimzewski JK, Poukens V, Goldberg RA, Mancini R, Taban M, Moy R, et al. Characterization of ocular tissues using microindentation and hertzian viscoelastic models. Invest Ophthalmol Vis Sci. 2011;52:3475–82. doi:10.1167/iovs.10-6867.
  • Hatami-Marbini H. Viscoelastic shear properties of the corneal stroma. J Biomech. 2014;47:723–28. doi:10.1016/j.jbiomech.2013.11.019.
  • Elsheikh A, Alhasso D. Mechanical anisotropy of porcine cornea and correlation with stromal microstructure. Exp Eye Res. 2009;88:1084–91. doi:10.1016/j.exer.2009.01.010.
  • Nguyen TD, Jones RE, Boyce BL. A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma. J Biomech Eng. 2008;130:041020.
  • Nguyen TD, Boyce BL. An inverse finite element method for determining the anisotropic properties of the cornea. Biomech Model Mechanobiol. 2011;10:323–37. doi:10.1007/s10237-010-0237-3.
  • Hatami-Marbini H, Etebu E. Hydration dependent biomechanical properties of the corneal stroma. Exp Eye Res. 2013;116:47–54. doi:10.1016/j.exer.2013.07.016.
  • Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008;24:S85–89.
  • Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci. 2013;54:1418–25. doi:10.1167/iovs.12-11387.
  • Sloan SR Jr., Khalifa YM, Buckley MR. The location- and depth-dependent mechanical response of the human cornea under shear loading. Invest Ophthalmol Vis Sci. 2014;55:7919–24. doi:10.1167/iovs.14-14997.
  • Elsheikh A. Finite element modeling of corneal biomechanical behavior. J Refract Surg. 2010;26:289–300. doi:10.3928/1081597X-20090710-01.
  • Whitford C, Studer H, Boote C, Meek KM, Elsheikh A. Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density. J Mech Behav Biomed Mater. 2015;42:76–87. doi:10.1016/j.jmbbm.2014.11.006.
  • Pandolfi A, Holzapfel GA. Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J Biomech Eng. 2008;130:061006. doi:10.1115/1.2982251.
  • Pandolfi A, Manganiello F. A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol. 2006;5:237–46. doi:10.1007/s10237-005-0014-x.
  • Pinsky PM, Van Der Heide D, Chernyak D. Computational modeling of mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg. 2005;31:136–45. doi:10.1016/j.jcrs.2004.10.048.
  • Alastrue V, Calvo B, Pena E, Doblare M. Biomechanical modeling of refractive corneal surgery. J Biomech Eng. 2006;128:150–60. doi:10.1115/1.2132368.
  • Cristobal JA, Del Buey MA, Ascaso FJ, Lanchares E, Calvo B, Doblare M. Effect of limbal relaxing incisions during phacoemulsification surgery based on nomogram review and numerical simulation. Cornea. 2009;28:1042–49. doi:10.1097/ICO.0b013e3181a27387.
  • Hanna KD, Jouve FE, Waring GO 3rd. Preliminary computer simulation of the effects of radial keratotomy. Arch Ophthalmol. 1989;107:911–18. doi:10.1001/archopht.1989.01070010933044.
  • Seven I, Vahdati A, De Stefano VS, Krueger RR, Dupps WJ Jr. Comparison of patient-specific computational modeling predictions and clinical outcomes of LASIK for myopia. Invest Ophthalmol Vis Sci. 2016;57:6287–97. doi:10.1167/iovs.16-19948.
  • Petsche SJ, Chernyak D, Martiz J, Levenston ME, Pinsky PM. Depth-dependent transverse shear properties of the human corneal stroma. Invest Ophthalmol Vis Sci. 2012;53:873–80. doi:10.1167/iovs.11-8611.
  • Buckley MR, Gleghorn JP, Bonassar LJ, Cohen I. Mapping the depth dependence of shear properties in articular cartilage. J Biomech. 2008;41:2430–37. doi:10.1016/j.jbiomech.2008.05.021.
  • Buckley MR, Bergou AJ, Fouchard J, Bonassar LJ, Cohen I. High-resolution spatial mapping of shear properties in cartilage. J Biomech. 2010;43:796–800. doi:10.1016/j.jbiomech.2009.10.012.
  • Buckley MR, Bonassar LJ, Cohen I. Localization of viscous behavior and shear energy dissipation in articular cartilage under dynamic shear loading. J Biomech Eng. 2013;135:31002. doi:10.1115/1.4007454.
  • Fernandez DC, Niazy AM, Kurtz RM, Djotyan GP, Juhasz T. Finite element analysis applied to cornea reshaping. J Biomed Opt. 2005;10:064018.
  • Thomasy SM, Raghunathan VK, Winkler M, Reilly CM, Sadeli AR, Russell P, Jester JV, Murphy CJ. Elastic modulus and collagen organization of the rabbit cornea: epithelium to endothelium. Acta Biomater. 2014;10:785–91. doi:10.1016/j.actbio.2013.09.025.
  • Last JA, Thomasy SM, Croasdale CR, Russell P, Murphy CJ. Compliance profile of the human cornea as measured by atomic force microscopy. Micron. 2012;43:1293–98. doi:10.1016/j.micron.2012.02.014.
  • Last JA, Liliensiek SJ, Nealey PF, Murphy CJ. Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J Struct Biol. 2009;167:19–24. doi:10.1016/j.jsb.2009.03.012.
  • Dias JM, Ziebarth NM. Anterior and posterior corneal stroma elasticity assessed using nanoindentation. Exp Eye Res. 2013;115:41–46. doi:10.1016/j.exer.2013.06.004.
  • Labate C, Lombardo M, De Santo MP, Dias J, Ziebarth NM, Lombardo G. Multiscale investigation of the depth-dependent mechanical anisotropy of the human corneal stroma. Invest Ophthalmol Vis Sci. 2015;56:4053–60. doi:10.1167/iovs.15-16875.
  • McKee CT, Last JA, Russell P, Murphy CJ. Indentation versus tensile measurements of young’s modulus for soft biological tissues. Tissue Eng Part B Rev. 2011;17:155–64. doi:10.1089/ten.teb.2010.0520.
  • Lindstrom RL, Kaufman HE, Skelnik DL, Laing RA, Lass JH, Musch DC, Trousdale MD, Reinhart WJ, Burris TE, Sugar A, et al. Optisol corneal storage medium. Am J Ophthalmol. 1992;114:345–56. doi:10.1016/S0002-9394(14)71803-3.
  • Michalek AJ, Buckley MR, Bonassar LJ, Cohen I, Iatridis JC. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content. J Biomech. 2009;42:2279–85. doi:10.1016/j.jbiomech.2009.06.047.
  • Michalek AJ, Buckley MR, Bonassar LJ, Cohen I, Iatridis JC. The effects of needle puncture injury on microscale shear strain in the intervertebral disc annulus fibrosus. Spine J. 2010;10:1098–105. doi:10.1016/j.spinee.2010.09.015.
  • Sevenler D, Buckley MR, Kim G, van der Meulen MC, Cohen I, Bonassar LJ. Spatial periodicity in growth plate shear mechanical properties is disrupted by vitamin D deficiency. J Biomech. 2013;46:1597–603. doi:10.1016/j.jbiomech.2013.04.023.
  • Silverberg JL, Dillavou S, Bonassar L, Cohen I. Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage. J Orthop Res. 2013;31:686–91. doi:10.1002/jor.v31.5.
  • Hatami-Marbini H, Etebu E. Rate dependent biomechanical properties of corneal stroma in unconfined compression. Biorheology. 2013;50:133–47.
  • Schinagl RM, Gurskis D, Chen AC, Sah RL. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res. 1997;15:499–506. doi:10.1002/(ISSN)1554-527X.
  • Wong BL, Sah RL. Mechanical asymmetry during articulation of tibial and femoral cartilages: local and overall compressive and shear deformation and properties. J Biomech. 2010;43:1689–95. doi:10.1016/j.jbiomech.2010.02.035.
  • Peters AE, Comerford EJ, Macaulay S, Bates KT, Akhtar R. Micromechanical properties of canine femoral articular cartilage following multiple freeze-thaw cycles. J Mech Behav Biomed Mater. 2017;71:114–21. doi:10.1016/j.jmbbm.2017.03.006.
  • Cohen B, Lai WM, Mow VC. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng. 1998;120:491–96.
  • Dufresne D The matlab particle tracking code repository Available from http://site.physics.georgetown.edu/matlab/.
  • Crocker JC, Grier DG. Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci. 1996;179:298–310. doi:10.1006/jcis.1996.0217.
  • Ateshian GA, Rajan V, Chahine NO, Canal CE, Hung CT. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng. 2009;131:061003.
  • Wang CCB, Deng JM, Ateshian GA, Hung CT. An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. J Biomech Eng. 2002;124:557–67. doi:10.1115/1.1503795.
  • Wong M, Ponticiello M, Kovanen V, Jurvelin JS. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J Biomech. 2000;33:1049–54. doi:10.1016/S0021-9290(00)00084-1.
  • Bursac PM, Obitz TW, Eisenberg SR, Stamenovic D. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. J Biomech. 1999;32:1125–30. doi:10.1016/S0021-9290(99)00105-0.
  • Cooney GM, Moerman KM, Takaza M, Winter DC, Simms CK. Uniaxial and biaxial mechanical properties of porcine linea alba. J Mech Behav Biomed Mater. 2015;41:68–82. doi:10.1016/j.jmbbm.2014.09.026.
  • Takaza M, Moerman KM, Gindre J, Lyons G, Simms CK. The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. J Mech Behav Biomed Mater. 2013;17:209–20. doi:10.1016/j.jmbbm.2012.09.001.
  • Bartell LR, Fortier LA, Bonassar LJ, Cohen I. Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer. J Biomech. 2015;48:3440–46. doi:10.1016/j.jbiomech.2015.05.035.
  • Olsen T, Sperling S. The swelling pressure of the human corneal stroma as determined by a new method. Exp Eye Res. 1987;44:481–90. doi:10.1016/S0014-4835(87)80159-8.
  • Hatami-Marbini H, Etebu E. A new method to determine rate-dependent material parameters of corneal extracellular matrix. Ann Biomed Eng. 2013;41:2399–408. doi:10.1007/s10439-013-0842-2.
  • Hatami-Marbini H, Etebu E. An experimental and theoretical analysis of unconfined compression of corneal stroma. J Biomech. 2013;46:1752–58. doi:10.1016/j.jbiomech.2013.03.013.
  • Martola EL, Baum JL. Central and peripheral corneal thickness - a clinical study. Arch Ophthalmol. 1968;79:28-&. doi:10.1001/archopht.1968.03850040030009.
  • Walkenbach RJ, Boney F, Ye GS. Corneal function after storage in dexsol or optisol. Invest Ophthalmol Vis Sci. 1992;33:2454–58.
  • Elsheikh A, Wang DF, Kotecha A, Brown M, Garway-Heath D. Evaluation of goldmann applanation tonometry using a nonlinear finite element ocular model. Ann Biomed Eng. 2006;34:1628–40. doi:10.1007/s10439-006-9191-8.
  • Kwon TH, Ghaboussi J, Pecknold DA, Hashash YMA. Effect of cornea material stiffness on measured intraocular pressure. J Biomech. 2008;41:1707–13. doi:10.1016/j.jbiomech.2008.03.004.
  • Ariza-Gracia MA, Zurita JF, Pinero DP, Rodriguez-Matas JF, Calvo B. Coupled biomechanical response of the cornea assessed by non-contact tonometry. A simulation study. PLoS One. 2015;10:e0121486.
  • Ambekar R, Toussaint KC, Johnson AW. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. J Mech Behav Biomed Mater. 2011;4:223–36. doi:10.1016/j.jmbbm.2010.09.014.
  • Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319. doi:10.1016/S0039-6257(97)00119-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.