887
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Study of Secondary Deposits in Multiple Round Nozzle Impactors

, &
Pages 1144-1151 | Received 25 Feb 2013, Accepted 09 Jun 2013, Published online: 14 Aug 2013
 

Abstract

Inertial impactors are devices that consist of one or more particle-laden jets impinging onto a surface. Many modern impactors consist of impaction stages that have hundreds of closely spaced jets that, under certain conditions, can influence each other. The objectives of this study were to experimentally quantify the effect of jet interactions on particle collection efficiency, and to determine the underlying collection mechanism. From this testing, three types of secondary deposits were found, defined as midline, nozzle, and halo. The magnitude of these deposits varied widely depending on nozzle spacing, Reynolds number, and particle Stokes number. It was found that midline deposition occurs on a line halfway between adjacent nozzles on the impaction plate, and contains up to 8% of particles entering the nozzle. Midline deposition occurs due to a recirculation zone at the intersection of the two jets. Nozzle plate deposition was found to be minimal, comprising less than 3% of particles entering the nozzle. Nozzle plate deposition occurs due to a secondary recirculation zone created against the backside of the nozzle plate. Halo deposition was found to be the largest source of secondary deposition at low Reynolds numbers with up to 70% of particles entering the nozzle being deposited at this location. These deposits occur due to particle sedimentation. In general, secondary particle depositions cause the collection efficiency curve to be less sharp, with a shift to lower particle Stokes numbers. Application of these results should drive better impactor design with sharper collection efficiency curves.

Copyright 2013 American Association for Aerosol Research

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.