128
Views
5
CrossRef citations to date
0
Altmetric
Articles

Floating tracer clustering in divergent random flows modulated by an unsteady mesoscale ocean field

ORCID Icon, , &
Pages 690-714 | Received 08 Jan 2020, Accepted 19 Jun 2020, Published online: 09 Jul 2020
 

ABSTRACT

Clustering of tracers floating on the ocean surface and evolving due to combined velocity fields consisting of a deterministic mesoscale component and a kinematic random component is analysed. The random component represents the influence of submesoscale motions. A theory of exponential clustering in random velocity fields is applied to characterise the obtained clustering scenarios in both steady and unsteady time-dependent mesoscale flows, as simulated by a comprehensive realistic, eddy-resolving, general circulation model for the Japan/East Sea. The mesoscale flow field abounds in transient eddy-like patterns modulating and branching the main currents, and the underlying time-mean flow component features closed recirculation zones that can entrap the tracer. The submesoscale flow component is modelled kinematically, as a divergent random velocity field with a prescribed correlation radius and variance. The combined flow induces tracer clustering, that is, the exponential growth of tracer density in patches with vanishing areas. The statistical topography methodology, which provides integral characteristics to quantify the emerging clusters, uncovers drastic dependence of the clustering rates on whether the mesoscale flow component is taken to be steady or time-dependent. The former situation favours robust exponential clustering, similar to the theoretically understood case of purely divergent and zero-mean random velocity. The latter situation, on the contrary, hinders exponential clustering due to significant advection of the tracer out of the nearly enclosed eddies, at the rate faster than the clustering rate.

Acknowledgements

This study was partially supported by the POI FEB RAS “Mathematical simulation and analysis of dynamical processes in the ocean” (AAAAA117030110034−7) and by the Russian Foundation for Basic Research projects 19−55−10001, 20−05−00083. The contribution of KVK in obtaining the analytical estimates was supported by the Russian Scientific Foundation project 19−17−00006. PB gratefully acknowledges support from the NERC grants NE/R011567/1, NE/T002220/1, the Leverhulme grant RPG−2019−024, and the Royal Society Exchange Grant IEC/R2/181033. The numerical simulation outputs were obtained using the Shared Resource Centre “Far Eastern Computing Resource” IACP FEB RAS (https://www.cc.dvo.ru). Data are available https://www.researchgate.net/publication/340681613_GAFD_dataset).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was partially supported by the POI FEB RAS Program “Mathematical simulation and analysis of dynamical processes in the ocean” (AAAA-A117030110034-7) and by the Russian Foundation for Basic Research projects 19-55-10001, 20-05-00083. The contribution of KVK in obtaining the analytical estimates was supported by the Russian Scientific Foundation project 19-17-00006. PB gratefully acknowledges support from the Natural Environment Research Council (NERC) grants NE/R011567/1, NE/T002220/1, the Leverhulme grant RPG-2019-024, and the Royal Society Exchange Grant IEC/R2/181033. The numerical simulation outputs were obtained using the Shared Resource Centre “Far Eastern Computing Resource” IACP FEB RAS (https://www.cc.dvo.ru). Data are available https://www.researchgate.net/publication/340681613_GAFD_dataset).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.