128
Views
5
CrossRef citations to date
0
Altmetric
Articles

Floating tracer clustering in divergent random flows modulated by an unsteady mesoscale ocean field

ORCID Icon, , &
Pages 690-714 | Received 08 Jan 2020, Accepted 19 Jun 2020, Published online: 09 Jul 2020

References

  • Abernathey, R. and Haller, G., Transport by Lagrangian vortices in the Eastern Pacific. J. Phys. Oceanogr. 2018, 48, 667–685. doi: 10.1175/JPO-D-17-0102.1
  • Bachman, S.D., Fox-Kemper, B. and Pearson, B., A scale-aware subgrid model for quasi-geostrophic turbulence. J. Geophys. Res.: Oceans 2017, 122, 1529–1554. doi: 10.1002/2016JC012265
  • Barbosa Aguiar, A.C., Peliz, A. and Carton, X., A census of meddies in a long-term high-resolution simulation. Prog. Oceanogr. 2013, 116, 80–94. doi: 10.1016/j.pocean.2013.06.016
  • Bec, J., Gawedzki, K. and Horvai, P., Multifractal clustering in compressible flows. Phys. Rev. Lett. 2004, 92, 224501. doi: 10.1103/PhysRevLett.92.224501
  • Berloff, P.S. and McWilliams, J., Material transport in oceanic gyres. part III: randomized stochastic models. J. Phys. Oceanogr. 2003, 33, 1416–1445. doi: 10.1175/1520-0485(2003)033<1416:MTIOGP>2.0.CO;2
  • Berloff, P., Dynamically consistent parameterization of mesoscale eddies. part III: deterministic approach. Ocean Model. 2018, 127, 1–15. doi: 10.1016/j.ocemod.2018.04.009
  • Berta, M., Griffa, A., Özgökmen, T.M. and Poje, A.C., Submesoscale evolution of surface drifter triads in the Gulf of Mexico. Geophys. Res. Lett. 2016, 43, 11,751–11,759. doi: 10.1002/2016GL070357
  • Berti, S., Santos, F.A.D., Lacorata, G. and Vulpiani, A., Lagrangian drifter dispersion in the southwestern Atlantic Ocean. J. Phys. Oceanogr. 2011, 41, 1659–1672. doi: 10.1175/2011JPO4541.1
  • Chang, K.I., Zhang, C.I., Park, C., Kang, D.J., Ju, S.J., Lee, S.H. and Wimbush, M., Oceanography of the East Sea (Japan Sea), 2016 (Springer: New York).
  • Chang, K., Teague, W., Circulation and currents in the southwestern East/Japan Sea: overview and review. Prog. Oceanogr. 2004, 61, 105–156. doi: 10.1016/j.pocean.2004.06.005
  • Chelton, D.B., Schlax, M.G. and Samelson, R.M., Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. doi: 10.1016/j.pocean.2011.01.002
  • Chelton, D.B., Schlax, M.G., Samelson, R.M. and de Szoeke, R.A., Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34, L15606. doi: 10.1029/2007GL030812
  • Cozar, A., Echevarria, F., Gonzalez-Gordillo, J.I., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A.T., Navarro, S., de Lomas, J.G., Ruiz, A., de Puelles, M.L.F. and Duarte, C.M., Plastic debris in the open ocean. Proc. Natl. Acad. Sci. 2014, 111, 10239–10244. doi: 10.1073/pnas.1314705111
  • Cressman, J.R. and Goldburg, W.I., Compressible flow: turbulence at the surface. J. Stat. Phys. 2003, 113, 875. doi: 10.1023/A:1027368920999
  • Danabasoglu, G., Yeager, S.G., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Boning, C., Bozec, A., Canuto, V.M., Cassou, C., Chassignet, E., Coward, A.C., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez, E., Fogli, P.G., Forget, G., Fujii, Y., Griffies, S.M., Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W.G., Leboissetier, A., Lu, J., Madec, G., Marsland, S.J., Masina, S., Navarra, A., Nurser, A.J.G., Pirani, A., Melia, D.S.Y., Samuels, B.L., Scheinert, M., Sidorenko, D., Treguier, A.M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A. and Wangi, Q., North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). part I: mean states. Ocean Model 2014, 73, 76–107. doi: 10.1016/j.ocemod.2013.10.005
  • Eckhardt, B. and Schumacher, J., Turbulence and passive scalar transport in a free-slip surface. Phys. Rev. E 2001, 64, 016314. doi: 10.1103/PhysRevE.64.016314
  • Falkovich, G., Gawedzki, K. and Vergassola, M., Particles and fields in fluid turbulence. Rev. Mod. Phys. 2001, 73, 913. doi: 10.1103/RevModPhys.73.913
  • Fouxon, I., Distribution of particles and bubbles in turbulence at a small Stokes number. Phys. Rev. Lett. 2012, 108, 134502. doi: 10.1103/PhysRevLett.108.134502
  • Gryanik, V.M., Sokolovskiy, M.A. and Verron, J., Dynamics of heton-like vortices. Regul. Chaotic Dyn. 2006, 11, 383–434. doi: 10.1070/RD2006v011n03ABEH000361
  • Gusev, A.V. and Diansky, N.A., Numerical simulation of the World Ocean circulation and its climatic variability for 1948–2007 using the INMOM. Izvestiya, Atmos. Oceanic Phys. 2014, 50, 1–12. doi: 10.1134/S0001433813060078
  • Haza, A.C., Özgökmen, T.M. and Hogan, P., Impact of submesoscales on surface material distribution in a gulf of Mexico mesoscale eddy. Ocean Model. 2016, 107, 28–47. doi: 10.1016/j.ocemod.2016.10.002
  • Huntley, H.S., Lipphardt Jr, B.L., Jacobs, G. and Kirwan Jr, A.D., Clusters, deformation, and dilation: diagnostics for material accumulation regions. J. Geophys. Res.: Oceans 2015, 120, 6622–6636. doi: 10.1002/2015JC011036
  • Isichenko, M.B., Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 1992, 64, 961–1043. doi: 10.1103/RevModPhys.64.961
  • Jacobs, G.A., Huntley, H.S., Smith, T., Edwards, K. and Bartels, B., Ocean processes underlying surface clustering. J. Geophys. Res.: Oceans 2016, 121, 180–197. doi: 10.1002/2015JC011140
  • Jansen, M.F. and Held, I.M., Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 2014, 80, 36–48. doi: 10.1016/j.ocemod.2014.06.002
  • Jansen, M.F., Held, I.M., Adcroft, A. and Hallberg, R., Energy budget-based backscatter in an eddy permitting primitive equation model. Ocean Model. 2015, 94, 15–26. doi: 10.1016/j.ocemod.2015.07.015
  • Kloeden, P. and Platen, E., Numerical Solution of Stochastic Differential Equations, 1992 (Springer: Berlin).
  • Klyatskin, V.I., Statistical description of the diffusion of a passive tracer in a random velocity field. Physics-Uspekhi 1994, 37, 501–513. doi: 10.1070/PU1994v037n05ABEH000110
  • Klyatskin, V.I., Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows. Phys. Usp. 2003, 46, 667–688. doi: 10.1070/PU2003v046n07ABEH001600
  • Klyatskin, V.I., Stochastic structure formation in random media. Phys. Usp. 2016, 59, 67–95. doi: 10.3367/UFNe.0186.201601e.0075
  • Klyatskin, V.I. and Koshel, K.V., The simplest example of the development of a cluster-structured passive tracer field in random flows. Physics-Uspekhi 2000, 170, 771–778.
  • Klyatskin, V.I., Stochastic Equations: Theory and Applications in Acoustics Hydrodynamics Magnetohydrodynamics and Radiophysics, Vol. 1, 2, 2015 (Springer: New York).
  • Klyatskin, V. and Koshel, K., Impact of diffusion on surface clustering in random hydrodynamic flows. Phys. Rev. E 2017, 95, 013109.
  • Klyatskin, V., Woyczynski, W. and Gurarie, D., Diffusing passive tracers in random incompressible velocity flows: statistical topography aspects. J. Stat. Phys. 1996a, 84, 797–836. doi: 10.1007/BF02179658
  • Klyatskin, V., Woyczynski, W. and Gurarie, D., Short-time correlation approximation for diffusing tracers in random velocity fields: a functional approach. In Stochastic Modeling in Oceanography, edited by R. Adler, P. Muller and B. Razovsky, Vol. 39 of Progress in Probability, 1996b, pp. 221–269 (Boston: Birkhauser).
  • Koshel, K.V. and Alexandrova, O.V., Some results of a numerical modeling of the diffusion of passive tracers in a random field of velocities. Izv. Atmos. Ocean. Phys. 1999, 35, 578–588.
  • Koshel, K.V. and Ryzhov, E.A., Local parametric instability near elliptic points in vortex flows under shear deformation. Chaos 2016, 26, 083111. doi: 10.1063/1.4961123
  • Koshel, K.V. and Ryzhov, E.A., Parametric resonance in the dynamics of an elliptic vortex in a periodically strained environment. Nonlin. Process. Geophys. 2017, 24, 1–8. doi: 10.5194/npg-24-1-2017
  • Koshel, K.V., Ryzhov, E.A. and Zhmur, V.V., Diffusion-affected passive scalar transport in an ellipsoidal vortex in a shear flow. Nonlin. Process. Geophys. 2013, 20, 437–444. doi: 10.5194/npg-20-437-2013
  • Koshel, K.V., Ryzhov, E.A. and Zhmur, V.V., Effect of the vertical component of diffusion on passive scalar transport in an isolated vortex model. Phys. Rev. E 2015, 92, 053021. doi: 10.1103/PhysRevE.92.053021
  • Koshel, K.V., Ryzhov, E.A. and Carton, X.J., Vortex interactions subjected to deformation flows: A review. Fluids 2019, 4, 14. doi: 10.3390/fluids4010014
  • Koshel, K.V., Stepanov, D.V., Ryzhov, E.A., Berloff, P. and Klyatskin, V.I., Clustering of floating tracers in weakly divergent velocity fields. Phys. Rev. E 2019, 100, 063108. doi: 10.1103/PhysRevE.100.063108
  • Large, W. and Yeager, S., The global climatology of an interannually varying air–sea flux data set. J. Clim. 2009, 33, 341–364.
  • Law, K.L., Moret-Ferguson, S., Maximenko, N.A., Proskurowski, G., Peacock, E.E., Hafner, J. and Reddy, C.M., Plastic accumulation in the North Atlantic subtropical gyre. Science 2010, 329, 1185–1188. doi: 10.1126/science.1192321
  • Locarnini, R., Mishonov, A., Antonov, J.I., Boyer, T., Garcia, H., Baranova, O., Zweng, M., Paver, C., Reagan, J., Johnson, D., Hamilton, M. and Seidov, D., World Ocean Atlas 2013, Volume 1: Temperature. 2013, Technical report.
  • Marchuk, G.I., Rusakov, A.S., Zalesny, V.B. and Diansky, N.A., Splitting numerical technique with application to the high resolution simulation of the Indian Ocean circulation. Pure Appl. Geophys. 2005, 162, 1407–1429. doi: 10.1007/s00024-005-2677-8
  • Martinez, E., Maamaatuaiahutapu, K. and Taillandier, V., Floating marine debris surface drift: convergence and accumulation toward the South Pacific subtropical gyre. Mar. Pollut. Bull. 2009, 58, 1347–1355. doi: 10.1016/j.marpolbul.2009.04.022
  • Maximenko, N., Hafner, J. and Niiler, P., Pathways of marine debris derived from trajectories of Lagrangian drifters. Mar. Pollut. Bull. 2012, 65, 51–62. doi: 10.1016/j.marpolbul.2011.04.016
  • McComb, W.D., The Physics of Fluid Turbulence, Vol. 25, Oxford Engineering Sci. Ser., 1990 (Oxford: Clarendon Press).
  • McWilliams, J.C., The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 1984, 146, 21–43. doi: 10.1017/S0022112084001750
  • McWilliams, J.C., Submesoscale currents in the ocean. Proc. R. Soc. A 2016, 472, 20160117. doi: 10.1098/rspa.2016.0117
  • McWilliams, J.C., The nature and consequences of oceanic eddies. In Ocean Modeling in an Eddying Regime, edited by M. Hecht and H. Hasumi, pp. 5–15, 2013 (American Geophysical Union (AGU): Washington, DC).
  • Ohlmann, J.C., Romero, L., Pallás-Sanz, E. and Perez-Brunius, P., Anisotropy in coastal ocean relative dispersion observations. Geophys. Res. Lett. 2019, 46, 879–888. doi: 10.1029/2018GL081186
  • Okubo, A., Diffusion and Ecological Problems: Mathematical Models, Vol. 10, Biomathematics, 1980 (Berlin: Springer-Verlag).
  • Pacanowski, R. and Philander, S., Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 1981, 11, 1443–1451. doi: 10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
  • Pedlosky, J., Ocean Circulation Theory, 1996 (Springer: New York).
  • Reznik, G.M., Dynamics of localized vortices on the beta plane. Izv. Atmos. Ocean. Phys. 2010, 46, 784–797. doi: 10.1134/S0001433810060095
  • Reznik, G.M. and Kizner, Z., Singular vortices in regular flows. Theor. Comput. Fluid Dyn. 2010, 24, 65–75. doi: 10.1007/s00162-009-0150-5
  • Roberts, A.P. and Teubner, M., Transport properties of heterogeneous materials derived from Gaussian random fields: bounds and simulation. Phys. Rev. E 1995, 51, 4141. doi: 10.1103/PhysRevE.51.4141
  • Ryzhov, E.A., Nonlinear dynamics of an elliptic vortex embedded in an oscillatory shear flow. Chaos 2017, 27, 113101. doi: 10.1063/1.4996769
  • Saichev, A. and Woyczynski, W., Probability distributions of passive tracers in randomly moving media; in Stochastic Models in Geosystems, edited by S. Molchanov and W. Woyczynski, Vol. 85 of IMA Volumes in Mathematics and its Applications, 1996, pp. 359–400 (Springer: New York).
  • Samelson, R.M., Lagrangian motion, coherent structures, and lines of persistent material strain. Annu. Rev. Mar. Sci. 2013, 5, 137–163. doi: 10.1146/annurev-marine-120710-100819
  • Schroeder, K., Chiggiato, J., Haza, A.C., Griffa, A., Özgökmen, T.M., Zanasca, P., Molcard, A., Borghini, M., Poulain, P.M., Gerin, R., Zambianchi, E., Falco, P. and Trees, C., Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett. 2012, 39. doi: 10.1029/2012GL051879
  • Schumacher, J. and Eckhardt, B., Clustering dynamics of Lagrangian tracers in free-surface flows. Phys. Rev. E 2002, 66, 017303. doi: 10.1103/PhysRevE.66.017303
  • Shevchenko, I. and Berloff, P., Eddy backscatter and counter-rotating gyre anomalies of midlatitude ocean dynamics. Fluids 2016, 1, 23. doi: 10.3390/fluids1030028
  • Sokolovskiy, M.A. and Verron, J., Dynamics of Vortex Structures in a Stratified Rotating Fluid, 2014 (Springer: Switzerland).
  • Stepanov, D.V., Estimating the baroclinic Rossby radius of deformation in the Sea of Okhotsk. Russian Meteorol. Hydrol. 2017, 42, 601–606. doi: 10.3103/S1068373917090072
  • Stepanov, D.V., Mesoscale eddies and baroclinic instability over the eastern Sakhalin shelf of the Sea of Okhotsk: a model-based analysis. Ocean Dyn 2018, 68, 1353–1370. doi: 10.1007/s10236-018-1192-2
  • Stepanov, D.V., Diansky, N.A. and Fomin, V.V., Eddy energy sources and mesoscale eddies in the Sea of Okhotsk. Ocean Dyn 2018, 68, 825–845. doi: 10.1007/s10236-018-1167-3
  • Stepanov, D.V., Ryzhov, E.A., Zagumennov, A.A., Berloff, P. and Koshel, K.V., Clustering of floating tracer due to mesoscale vortex and submesoscale fields. Geophys. Res. Lett. 2020, 47, doi: 10.1029/2019GL086504
  • Tsujino, H., Urakawa, S., Nakano, H., Small, R.J., Kim, W.M., Yeager, S.G., Danabasoglu, G., Suzuki, T., Bamber, J.L., Bentsen, M., Büning, C.W., Bozec, A., Chassignet, E.P., Curchitser, E., Boeira Dias, F., Durack, P.J., Griffies, S.M., Harada, Y., Ilicak, M., Josey, S.A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W.G., Le Sommer, J., Marsland, S.J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M. and Yamazaki, D., JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Model 2018, 130, 79–139. doi: 10.1016/j.ocemod.2018.07.002
  • Väli, G., Zhurbas, V.M., Laanemets, J. and Lips, U., Clustering of floating particles due to submesoscale dynamics: a simulation study for the Gulf of Finland, Baltic Sea. Fundamentalnaya iPrikladnaya Gidrofizika 2018, 11, 21–35.
  • Vallis, G.K., Atmospheric and Oceanic Fluid Dynamics, 2017 (Cambridge University Press: Cambridge).
  • Yakovlev, N.G., Reproduction of the large-scale state of water and sea ice in the Arctic ocean in 1948–2002: part I. numerical model. Izvestiya, Atmos. Oceanic Phys. 2009, 45, 357–371. doi: 10.1134/S0001433809030098
  • Zalesny, V.B., Agoshkov, V.I., Aps, R., Shutyaev, V., Zayachkovskiy, A., Goerlandt, F. and Kujala, P., Numerical modeling of marine circulation, pollution assessment and optimal ship routes. J. Marine Sci. Eng. 2017, 5, 27. doi: 10.3390/jmse5030027
  • Zhmur, V.V., Ryzhov, E.A. and Koshel, K.V., Ellipsoidal vortex in a nonuniform flow: dynamics and chaotic advections. J. Mar. Res. 2011, 69, 435–461. doi: 10.1357/002224011798765204
  • Zhong, Y. and Bracco, A., Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. J. Geophys. Res.: Oceans 2013, 118, 5651–5668. doi: 10.1002/jgrc.20402
  • Zirbel, C.L. and Cinlar, E., Mass transport by brownian flows; in Stochastic Models in Geosystems, edited by S.A. Molchanov and W.A. Woyczynski, IMA Volumes in Mathematics and its Applications, 1997, p. 459 (Springer: New York).
  • Zweng, M., Reagan, J., Antonov, J., Locarnini, R., Mishonov, A., Boyer, T., Garcia, H., Baranova, O., Johnson, D., Seidov, D. and Biddle, M., World Ocean Atlas 2013, Volume 2: Salinity. 2013, Technical report.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.