105
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Improving the 6-Aminopenicillanic acid release process using vermiculite-alginate biocomposite bead on drug delivery system

, & ORCID Icon
Pages 1489-1501 | Received 02 Jun 2021, Accepted 27 Oct 2021, Published online: 03 Dec 2021
 

Abstract

The present study deals with developing vermiculite (VMT)-alginate (Alg) composites with different cross-linker concentrations (CaCl2) to deliver the controlled 6-aminopenicillin acid (6-APA). The Characterization of synthesized composites was conducted by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. Optimization attempts were explored via the response surface method (RSM) to best predict the actual amount of compound. The adsorption capacity of 6-APA onto this adsorbent was found to be 208.33 mg/g, which was higher than that for other clays. The equilibrium and Kinetic studies (chemical reaction and diffusion-based models) indicated that drug absorption on VMT-Alg is homogeneous with chemical interaction. An increase in cross-linker (CaCl2) concentration leads to improvement in the drug encapsulation efficiency while having no significant effect on loading efficiency. The in-vitro release of the pure drug shows a rapid burst release followed by 100% cumulative release within 6 h. Whereas, the synthesized drug with Alg substantially showed less release of 43% after 8 h. Release experiments revealed that the presence of the CaCl2 delayed the release of the 6-APA less than 35% after 12 h. The kinetic release of 6-APA is followed by the Korsmeyer-Peppas model based on Fick's law mechanism due to the kinetic exponent (n < 0.5). All studied composites antibacterial activity after 24 h exposure against E. Coli and S. aureus. The antibacterial activities of composites were evaluated by the halo of no growth. The results showed that the VMT-Alg-6APA composite had strong activity against Gram-positive and Gram-negative bacteria.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.