104
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Improving the 6-Aminopenicillanic acid release process using vermiculite-alginate biocomposite bead on drug delivery system

, & ORCID Icon
Pages 1489-1501 | Received 02 Jun 2021, Accepted 27 Oct 2021, Published online: 03 Dec 2021

References

  • Kulkarni PR, Yadav JD, Vaidya KA. Liposomes: a novel drug delivery system. Int J Curr Pharm Res. 2011;3(2):10–18.
  • Xu D, Du L, Mai W, et al. Continuous release and antibacterial activity of chlorhexidine acetate intercalated vermiculite. Mater Res Innovations. 2013;17(3):195–200.
  • Riaz U, M Ashraf S. Double layered hydroxides as potential anti-cancer drug delivery agents. Mini Rev Med Chem. 2013;13(4):522–529.
  • Shen S, Chang Z, Sun X, et al. Process integration for production of 6-aminnopenicillanic acid from penicillin G fermentation broth. Process Biochem. 2006;41(3):571–574.
  • Bergamini MF, Teixeira MF, Dockal ER, et al. Evaluation of different voltammetric techniques in the determination of amoxicillin using a carbon paste electrode modified with [N, N′-ethylenebis (salicylideneaminato)] oxovanadium (IV). J Electrochem Soc. 2006;153(5):E94–E98.
  • Rozas O, Contreras D, Mondaca MA, et al. Experimental design of fenton and photo-Fenton reactions for the treatment of ampicillin solutions. J Hazard Mater. 2010;177(1–3):1025–1030.
  • Anwar A, Shah M, Muhammad S, et al. Synthesis of 4-formyl pyridinium propylthioacetate stabilized silver nanoparticles and their application in chemosensing of 6-aminopenicillanic acid (APA). Int J Environ Sci Technol. 2019;16(3):1563–1570.
  • Wishart D. Recent advances in antimicrobial drugs: the penicillins. J Am Vet Med Assoc. 1984;185(10):1106–1108.
  • Bello ML, Junior AM, Vieira BA, et al. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material. PLoS One. 2015;10(3):e0121110.
  • Rebitski EP, Alcântara ACS, Darder M, et al. Functional carboxymethylcellulose/zein bionanocomposite films based on neomycin supported on sepiolite or montmorillonite clays. ACS Omega. 2018;3(10):13538–13550.
  • Ghadiri M, Hau H, Chrzanowski W, et al. Laponite clay as a carrier for in situ delivery of tetracycline. RSC Adv. 2013;3(43):20193–20201.
  • Antón-Herrero R, García-Delgado C, Alonso-Izquierdo M, et al. Comparative adsorption of tetracyclines on biochars and stevensite: looking for the most effective adsorbent. Appl Clay Sci. 2018;160:162–172.
  • Kaygusuz H, Erim F. Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. React Funct Polym. 2013;73(11):1420–1425.
  • de Sousa Rodrigues LA, Figueiras A, Veiga F, et al. The systems containing clays and clay minerals from modified drug release: a review. Colloids Surf B Biointerfaces. 2013;103:642–651.
  • Suresh R, Borkar S, Sawant V, et al. Nanoclay drug delivery system. Int J Pharm Sci Nanotechnol. 2010;3(2):901–906.
  • Soleimanpour Moghadam N, Azadmehr A, Hezarkhani A. Extended release of 6-aminopenicillanic acid by silanol group functionalized vermiculite. J Dispersion Sci Technol. 2021;42(13):1–14.
  • Jayrajsinh S, Shankar G, Agrawal YK, et al. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Delivery Sci Technol. 2017;39:200–209.
  • Nagy NM, Kónya J. Interfacial chemistry of rocks and soils. Vol. 148. Boca Raton, FL: CRC Press; Taylor & Francis Group. 2009.
  • Peppas N. Analysis of fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–111.
  • Del Gaudio P, Colombo P, Colombo G, et al. Mechanisms of formation and disintegration of alginate beads obtained by prilling. Int J Pharm. 2005;302(1–2):1–9.
  • Al-Kassas RS, Al-Gohary OM, Al-Faadhel MM. Controlling of systemic absorption of gliclazide through incorporation into alginate beads. Int J Pharm. 2007;341(1–2):230–237.
  • Ely A, Baudu M, Kankou M, et al. Copper and nitrophenol removal by low cost alginate/mauritanian clay composite beads. Chem Eng J. 2011;178:168–174.
  • Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28(6):621–630.
  • Jain S, Datta M. Montmorillonite-alginate microspheres as a delivery vehicle for oral extended release of venlafaxine hydrochloride. J Drug Delivery Sci Technol. 2016;33:149–156.
  • Pongjanyakul T, Suksri H. Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. Colloids Surf B Biointerfaces. 2009;74(1):103–113.
  • Wang Q, Xie X, Zhang X, et al. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol. 2010;46(3):356–362.
  • Angadi SC, Manjeshwar LS, Aminabhavi TM. Novel composite blend microbeads of sodium alginate coated with chitosan for controlled release of amoxicillin. Int J Biol Macromol. 2012;51(1–2):45–55.
  • Singh B, Sharma D, Kumar R, et al. Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl Clay Sci. 2009;45(1–2):76–82.
  • Hundáková M, Tokarský J, Valášková M, et al. Structure and antibacterial properties of polyethylene/organo-vermiculite composites. Solid State Sci. 2015;48:197–204.
  • Holešová S, Reli M, Hundáková M, et al. Synthesis and antimicrobial activity of polyethylene/chlorhexidine/vermiculite nanocomposites. J Nanosci Nanotechnol. 2019;19(5):2925–2933.
  • Čech Barabaszová K, Holešová S, Hundáková M, et al. Tribo-Mechanical properties of the antimicrobial Low-Density polyethylene (LDPE) nanocomposite with hybrid ZnO–vermiculite–chlorhexidine nanofillers. Polymers. 2020;12(12):2811.
  • Wu T, Xie A-G, Tan S-Z, et al. Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids Surf B Biointerfaces. 2011;86(1):232–236.
  • Li K, Bian S, Zhen W, et al. Performance, crystallization and rheological behavior of poly (lactic acid)/N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride intercalated vermiculite grafted poly (acrylamide) nanocomposites. React Funct Polym. 2021;158:104791.
  • Barabaszová KČ, Holešová S, Šulcová K, et al. Hybrid antibacterial nanocomposites based on the vermiculite/zinc oxide-chlorhexidine. J Nanosci Nanotechnol. 2019;19(5):3041–3048.
  • Bera H, Ippagunta SR, Kumar S, et al. Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery. Mater Sci Eng C Mater Biol Appl. 2017;76:715–726.
  • He H, Duchet J, Galy J, et al. Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. J Colloid Interface Sci. 2005;288(1):171–176.
  • Holešová S, Štembírek J, Bartošová L, et al. Antibacterial efficiency of vermiculite/chlorhexidine nanocomposites and results of the in vivo test of harmlessness of vermiculite. Mater Sci Eng C Mater Biol Appl. 2014;42:466–473.
  • Saha K, Butola BS, Joshi M. Drug‐loaded polyurethane/clay nanocomposite nanofibers for topical drug‐delivery application. J Appl Polym Sci. 2014;131(10):n/a–n/a.
  • Möckel JE, Lippold BC. Zero-order drug release from hydrocolloid matrices. Pharm Res. 1993;10(7):1066–1070.
  • Siepmann J, Peppas NA. Higuchi equation: derivation, applications, use and misuse. Int J Pharm. 2011;418(1):6–12.
  • Peppas N, Bar-Howell B. NA Peppas (Ed.), Hydrogels in medicine and pharmacy. Boca Raton (FL): CRC Press; 1986..
  • Hua S, Ma H, Li X, et al. pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol. 2010;46(5):517–523.
  • Vityazev FV, Fedyuneva MI, Golovchenko VV, et al. Pectin-silica gels as matrices for controlled drug release in gastrointestinal tract. Carbohydr Polym. 2017;157:9–20.
  • Sadeghalvad B, Azadmehr A, Hezarkhani A. Enhancing adsorptive removal of sulfate by metal layered double hydroxide functionalized Quartz-Albitophire iron ore waste: preparation, characterization and properties. RSC Adv. 2016;6(72):67630–67642.
  • Gleizer S, Ben-Nissan R, Bar-On YM, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell. 2019;179(6):1255–1263.e12.
  • Sause WE, Buckley PT, Strohl WR, et al. Antibody-based biologics and their promise to combat Staphylococcus aureus infections. Trends Pharmacol Sci. 2016;37(3):231–241.
  • Álvarez‐Ayuso E, García‐Sánchez A. Removal of heavy metals from waste waters by vermiculites. Environ Technol. 2003;24(5):615–625.
  • Al-Abbasy DHA. Synthesis and characterization of organosilicon ligands and used it in removal of some divalent metal ions from their aqueous solutions [doctoral dissertation]. University of Kerbala; 2019.
  • Taha M, Drew GH, Longhurst P, et al. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments. Atmos Environ. 2006;40(6):1159–1169.
  • Reddy SG, Pandit AS. Biodegradable sodium alginate and lignosulphonic acid blends: characterization and swelling studies. Polímeros. 2013;23(1):13–18.
  • Mandal S, Patil VS, Mayadevi S. Alginate and hydrotalcite-like anionic clay composite systems: Synthesis, characterization and application studies. Microporous Mesoporous Mater. 2012;158:241–246.
  • Moosavi FS, Tavakoli T. Amoxicillin degradation from contaminated water by solar photocatalysis using response surface methodology (RSM). Environ Sci Pollut Res Int. 2016;23(22):23262–23270.
  • Hong H-J, Jeong HS, Roh K-M, et al. Preparation of Mesalazine-Clay composite encapsulated alginate (MCA) bead for targeted drug delivery: Effect of composite content and CaCl 2 concentration. Macromol Res. 2018;26(11):1019–1025.
  • Zhu H, Chen T, Liu J, et al. Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Adv. 2018;8(5):2616–2621.
  • Wu S, Zhao X, Li Y, et al. Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem Eng J. 2013;230:389–395.
  • Nayak AK, Pal D. Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int J Biol Macromol. 2011;49(4):784–793.
  • Soumia A, Adel M, Amina S, et al. Fe3O4-alginate nanocomposite hydrogel beads material: one-pot preparation, release kinetics and antibacterial activity. Int J Biol Macromol. 2020;145:466–475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.