230
Views
16
CrossRef citations to date
0
Altmetric
Articles

Copper toxicity affects indolic glucosinolates and gene expression of key enzymes for their biosynthesis in Chinese cabbage

, & ORCID Icon
Pages 1288-1301 | Received 05 Jan 2019, Accepted 06 Sep 2019, Published online: 13 Sep 2019
 

ABSTRACT

Excessive levels of Cu2+ are phytotoxic and exposure of Chinese cabbage to elevated Cu2+ concentrations led to reduction of the plant biomass. To get more insight into the role of glucosinolates upon copper stress, the impact of elevated Cu2+ levels on glucosinolates biosynthesis were studied in Chinese cabbage. The content of total glucosinolates was only elevated in the roots, mostly due to indolic and aromatic glucosinolates. The results showed a higher contribution of indolic glucosinolates, notably glucobrassicin, a 2- and 4-fold increase in Chinese cabbage exposed to 5 and 10 µM Cu2+, respectively. Furthermore, the increase in the indolic glucosinolates was accompanied by enhanced transcript levels of CYP79B2 and CYP83B1, two genes involved in biosynthesis of indolic glucosinolates, and that of the MYB51, a transcription factor involved in regulation of indolic glucosinolate biosynthesis pathway, at elevated Cu2+ concentrations. In addition, total sulfur and nitrogen remained unaffected in the root, but total glucosinolate was significantly enhanced upon exposure to elevated Cu2+. This result may show that relatively more sulfur and nitrogen was channeled into glucosinolates in the root. In conclusion, accumulation of indolic glucosinolates in the root can be considered as a strategy for Chinese cabbage to combat elevated Cu2+ concentrations.

Acknowledgements

Financial support was provided by the Danish National Research Foundation DNRF grant 99 (MB). The authors wish to thank Dr. Luit De Kok for his supports in the laboratory of plant physiology, University of Groningen.

Disclosure statement

We declare that we have no conflict of interest.

Additional information

Funding

This work was supported by the Danish National Research Foundation DNRF grant [99] 99 (MB).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.