230
Views
16
CrossRef citations to date
0
Altmetric
Articles

Copper toxicity affects indolic glucosinolates and gene expression of key enzymes for their biosynthesis in Chinese cabbage

, & ORCID Icon
Pages 1288-1301 | Received 05 Jan 2019, Accepted 06 Sep 2019, Published online: 13 Sep 2019

References

  • Aghajanzadeh T, Hawkesford MJ, De Kok LJ. 2014. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Front Plant Sci. 5;704:1349–1356. doi:10.1016/0006-291x(75)90508-2.
  • Aghajanzadeh T, Kopriva S, Hawkesford MJ, Koprivova A, De Kok LJ. 2015. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact on the glucosinolate composition. Front Plant Sci. 6:924. doi:10.3389/fpls.2015.00924.
  • Aghajanzadeh TA, Reich M, Kopriva S, De Kok LJ. 2018. Impact of chloride (NaCl, KCl) and sulphate (Na2SO4, K2SO4) salinity on glucosinolate metabolism in Brassica rapa. J Agron Crop Sci. 204:137–146. doi:10.1111/jac.12243.
  • Azmat R, Riaz S. 2012. The inhibition of polymerization of glucose in carbohydrate under Cu stress in Vigna radiate. Pak J Bot. 44:95–98.
  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R. 2001. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell. 13:101–111. doi:10.1105/tpc.010202.
  • Bohinc T, Trdan S. 2012. Environmental factors affecting the glucosinolate content in Brassicaceae. J Food Agric Environ. 10:357–360.
  • Boyd RS, Martens SN. 1994. Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos. 70:21–25. doi:10.2307/3545694.
  • Boyd RS, Shaw JJ, Martens SN. 1994. Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. Am J Bot. 81:294–300. doi:10.1002/j.1537-2197.1994.tb15446.x.
  • Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon N. 2009. Copper homeostasis. New Phytol. 182:799–816. doi:10.1111/j.1469-8137.2009.02846.x.
  • Burow M, Zhang ZY, Ober JA, Lambrix VM, Wittstock U, Gershenzon J, Kliebenstein DJ. 2008. ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochem. 69:663–671. doi:10.1016/j.phytochem.2007.08.027.
  • Cabello-Hurtado F, Gicquel M, Esnault MA. 2012. Evaluation of the antioxidant potential of cauliflower (Brassica oleracea) from a glucosinolates content perspective. Food Chem. 132:1003–1009. doi:10.1016/j.foodchem.2011.11.086.
  • Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J. 2005. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol. 137:253–262. doi:10.1104/pp.104.054395.
  • Chen S, Glawischnig E, Jørgensen K, Naur P, Jørgensen B, Olsen C-E, Hansen CH, Rasmussen H, Pickett JA, Halkier BA. 2003. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. The Plant J. 33:923–937. doi:10.1046/j.1365-313x.2003.01679.x.
  • Crocoll C, Halkier BA, Burow M. 2017. Analysis and quantification of glucosinolates. Curr Protoc Plant Biol. 1:385–409. doi:10.1002/cppb.20027.
  • Davis MA, Boyd RS. 2000. Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator, Streptanthus polygaloides (Brassicaceae). New Phytol. 146:211–217. doi:10.1046/j.1469-8137.2000.00632.x.
  • Durenne B, Blondel A, Druart P, Fauconnier ML. 2018. A laboratory highthroughput glass chamber using dynamic headspace TD-GC/MS method for the analysis of whole Brassica napus L. plantlet volatiles under cadmium-related abiotic stress. Phytochem Anal. 29: 463-471. doi: 10.1002/pca.2750.
  • Engelen-Eigles G, Holden G, Cohen JD, Gardner G. 2006. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J Agric Food Chem. 54:328–334. doi:10.1021/jf051857o.
  • Ernest W, Krauss GJ, Verkleij JAC, Wesenberg D. 2008. Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ. 31:123–143. doi:10.1111/j.1365-3040.2007.01746.x.
  • Falk K, Tokuhisa J, Gershenzon J. 2007. The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol. 9:573–581. doi:10.1055/s-2007-965431.
  • Francisco M, Josep B, Caligagan H, Li B, Corwin JA, Lin C, Kerwin R, Burow M, Kliebenstein DJ. 2016b. The defense metabolite, allyl glucosinolate, modulates Arabidopsis thaliana biomass dependent upon the endogenous glucosinolate pathway. Front Plant Sci. 7:774. doi:10.3389/fpls.2016.00774.
  • Francisco M, Joseph B, Caligagan H, Li B, Corwin JA, Lin C, Kerwin RE, Burow M, Kliebenstein DJ. 2016a. Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense. Front Plant Sci. 7:1010. doi:10.3389/fpls.2016.01010.
  • Frerigmann H, Gigolashvili T. 2014. Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency. Front Plant Sci. 5:626. doi:10.3389/fpls.2014.00626.
  • Ghaderian YSM, Lyon AJE, Baker AJM. 2000. Seedling mortality of metal hyperaccumulator plants resulting from damping off by Pythium spp. New Phytol. 146:219–224. doi:10.1046/j.1469-8137.2000.00645.x.
  • Gigolashvili T, Berger B, Mock HP, Müller C, Weisshaar B, Flügge UI. 2007a. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. The Plant J. 50:886–901. doi:10.1111/j.1365-313X.2007.03099.x.
  • Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI. 2007b. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. The Plant J. 51:247–261. doi:10.1111/j.1365-313X.2007.03133.x.
  • Gill S, Tuteja N. 2011. Cadmium stress tolerance in crop plants: probing the role of sulphur. Plant Signal Behav. 6:215–222 doi:10.4161/psb.6.2.14880.
  • Halkier BA, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol. 57:303–333. doi:10.1146/annurev.arplant.57.032905.105228.
  • Haneklaus S, Bloem E, Schnug E. 2009. Plant disease control by nutrient management: sulphur. In: Walters D, editor. Disease control in crops. Wiley-Blackwell,Oxford. p. 221–236.
  • Hawkesford MJ, De Kok LJ. 2006. Managing sulfur metabolism in plants. Plant Cell Environ. 29:382–395.
  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, et al. 2007. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. PNAS. 104:6478–6483. doi:10.1073/pnas.0611629104.
  • Hull AK, Vij R, Celenza JL. 2000. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. PNAS. 97:2379–2384. doi:10.1073/pnas.040569997.
  • Jones JB. 1995. Determining total sulphur in plant tissue using the HACH kit spectrophotometer technique. Sulphur Agri. 19:58–62.
  • Katz E, Nisani S, Yadav BS, Woldemariam MG, Shai B, Obolski U, Ehrlich M, Shani E, Jander Chamovitz DA. 2015. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana. The Plant J. 82:547–555. doi:10.1111/tpj.12824.
  • Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T. 2001. Gene duplication in the diversification of secondary metabolism: tandem 2-Oxoglutarate–dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell. 13:681–694. doi:10.1105/tpc.13.3.681.
  • Kolbert Z, Peto A, Lehotai N, Feigl G, Erdei L. 2012. Long-term copper (Cu2+) exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regul. 68:151–159. doi:10.1007/s10725-012-9701-7.
  • Lequeux H, Hermans C, Lutts S, Verbruggen N. 2010. Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem. 48:673–682. doi:10.1016/j.plaphy.2010.05.005.
  • López-Berenguer C, Martínez-Ballesta MC, Moreno DA, Carvajal M, García-Viguera C. 2009. Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem. 57:572–578. doi:10.1021/jf802994p.
  • Malinovsky FG, Thomsen MLF, Nintemann SJ, Jagd LM, Bourgine B, Burow M, Kliebenstein DJ. 2017. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. ELife. 6:e29353. doi:10.7554/eLife.29353.
  • Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. J Exp Bot. 63:2853–2872. doi:10.1093/jxb/ers091.
  • Mathys W. 1977. The role ofmalate, oxalate, and mustard oil glucosides in the evolution of zinc resistance in herbage plants. Physiol Plant. 40:130–136. doi:10.1111/ppl.1977.40.issue-2.
  • Miao H, Cai C, Wei J, Huang J, Chang J, Qian H, Zhang X, Zhao Y, Sun B, Wang B, et al. 2016. Glucose enhances Indolic glucosinolate biosynthesis without reducing primary sulfur assimilation. Sci Rep. 6:31854. doi:10.1038/srep31854.
  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. 2000. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem. 275:33712–33717. doi:10.1074/jbc.M001667200.
  • Morelli E, Scarano G. 2004. Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci. 167:289–296. doi:10.1016/j.plantsci.2004.04.001.
  • Natella F, Maldini M, Leoni G, Scaccini C. 2014. Glucosinolates redox activities: can they act as antioxidants? Food Chem. 149:226–232. doi:10.1016/j.foodchem.2013.10.134.
  • Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA. 2003. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol. 133:63–72. doi:10.1104/pp.102.019240.
  • Pandey C, Augustine R, Panthri M, Zia I, Bisht NC, Gupta M. 2017. Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: a comparison of two Brassica cultivars. Plant Physiol Biochem. 111:144–154. doi:10.1016/j.plaphy.2016.11.026.
  • Pollard AJ, Baker AJM. 1997. Deterrence ofherbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol. 135:655–658. doi:10.1046/j.1469-8137.1997.00689.x.
  • Reich M, Aghajanzadeh TA, Parmarc S, Hawkesford MJ, De Kok LJ. 2018. Calcium ameliorates the toxicity of sulfate salinity in Brassica rapa. Plant Physiol. 231:1–8. doi:10.1016/j.jplph.2018.08.014.
  • Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K. 2001. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell. 13:351–367. doi:10.1105/tpc.010202.
  • Sasse F 1976. Ökologische Untersuchungen der Serpentinvegetation in Frankreich, Italien, Osterreich und Deutschland. PhD thesis, University of Minster.
  • Shahbaz M, Stuiver CEE, Posthumus FS, Parmar S, Hawkesford MJ, De Kok LJ. 2014. Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism related gene expression and the suggested regulatory metabolites. Plant Biol. 16:68–78. doi:10.1111/plb.12019.
  • Shahbaz M, Tseng MH, Stuiver CEE, Koralewska A, Posthumus FS, Venema JH, Parmar S, Schat H, Hawkesford MJ, De Kok LJ. 2010. Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage. Plant Physiol. 167:438–446. doi:10.1016/j.jplph.2009.10.016.
  • Tolrà RP, Poschenrieder C, Alonso R, Barceló D, Barceló J. 2001. Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytol. 151(3):621–626. doi:10.1046/j.0028-646x.2001.00221.x.
  • Valgimigli L, Iori R. 2009. Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen. 50:222–237. doi:10.1002/em.20468.
  • Verwoerd TC, Dekker BM, Hoekema A. 1989. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 17:23–62. doi:10.1093/nar/17.6.2362.
  • Yruela I. 2009. Copper in plants: acquisition, transport and interactions. Funct Plant Biol. 36:409–430. doi:10.1071/FP08288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.