353
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Mechanisms Behind Pyrroloquinoline Quinone Supplementation on Skeletal Muscle Mitochondrial Biogenesis: Possible Synergistic Effects with Exercise

, MS & , PhD, FACN
Pages 738-748 | Received 13 Sep 2017, Accepted 02 Apr 2018, Published online: 01 May 2018
 

Abstract

There is clear evidence that endurance exercise training elicits intramuscular adaptations that can lead to elevations in mitochondrial biogenesis, oxidative capacity, mitochondrial density, and mitochondrial function. Mitochondrial biogenesis is regulated by the activation of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha. This master regulator of mitochondrial biogenesis activates nuclear respiratory factors (NRF-1, NRF-2) and mitochondrial transcription factor A, which enables the expansion of mitochondrial size and transcription of mitochondrial DNA. Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in various physiological processes such as redox modulation, cellular energy metabolism, and mitochondrial biogenesis and is a potent antioxidant. Since both exercise and supplemental PQQ have mechanisms associated with mitochondrial biogenesis, it is plausible that a differential additive ergogenic benefit with PQQ can ensue. However, there is a major paucity of research exploring the role of PQQ in conjunction with exercise. In this respect, the purpose of the critical literature review will be to present a comprehensive overview of PQQ and the proposed mechanisms underlying mitochondrial biogenesis. Because exercise can instigate the molecular responses indicative of mitochondrial biogenesis, it is plausible that PQQ and exercise may instigate a synergistic response.

Key teaching points

Endurance exercise training enables skeletal muscle adaptations that can induce increases in mitochondrial biogenesis, improve oxidative capacity, mitochondrial density, and mitochondrial function.

Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in physiological processes including redox modulation, cellular energy metabolism, mitochondrial biogenesis, and antioxidant potential.

There is emerging evidence to support that PQQ supplementation can upregulate the molecular signaling responses indicative of mitochondrial biogenesis within skeletal muscle.

If both endurance exercise and PQQ supplementation can elicit increases in the molecular responses indicative of mitochondrial biogenesis, it is possible that both PQQ and exercise may instigate a synergistic ergogenic response.

There is a scarcity of research exploring the possible role of PQQ supplementation with concomitant endurance exercise. Therefore, future research is necessary to investigate the ergogenic potential behind PQQ supplementation in conjunction with endurance exercise.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.