344
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Mechanisms Behind Pyrroloquinoline Quinone Supplementation on Skeletal Muscle Mitochondrial Biogenesis: Possible Synergistic Effects with Exercise

, MS & , PhD, FACN
Pages 738-748 | Received 13 Sep 2017, Accepted 02 Apr 2018, Published online: 01 May 2018

References

  • Drake JC, Wilson RJ, Yan Z. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J. 2017;30:13–22. doi:10.1096/fj.15-276337.
  • Conley KE. Mitochondria to motion: Optimizing oxidative phosphorylation to improve exercise performance. J Exp Biol. 2016;219:243–9. doi:10.1242/jeb.126623. PMID:26792336.
  • Erlich AT, Tryon LD, Crilly MJ, Memme JM, Mesbah Moosavi ZS, Oliveira AN, Beyfuss K, Hood DA. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integr Med Res. 2016;5:187–97. doi:10.1016/j.imr.2016.05.003. PMID:28462117.
  • Vaughan RA, Mermier CM, Bisoffi M, Trujillo KA, Conn CA. Dietary stimulators of the PGC-1 superfamily and mitochondrial biosynthesis in skeletal muscle. A mini-review. J Physiol Biochem. 2014;70(1):271–84. doi:10.1007/s13105-013-0301-4. PMID:24338337.
  • Hawley JA, Morton JP. Ramping up the signal: Promoting endurance training adaptation in skeletal muscle by nutritional manipulation. Proc Austral Physiol Soc. 2013;44:109–15.
  • Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu. Rev Physiol. 2009;71:177–203. doi:10.1146/annurev.physiol.010908.163119. PMID:19575678.
  • Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84. doi:10.1042/bse0470069. PMID:20533901.
  • Gleyzer N, Vercauteren K, Scarpulla, RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-1) and PGC-1 family coactivators. Mol Cell Biol. 2005;25:1354–66. doi:10.1128/MCB.25.4.1354-1366.2005. PMID:15684387.
  • Jung S, Kim K. Exercise-induced PGC-1 a transcriptional factors in skeletal muscle. Int Med Res. 2014;3:155–60. doi:10.1016/j.imr.2014.09.004.
  • Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801. doi:10.1038/nature00904. PMID:12181572.
  • Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N. PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am J Physiol Endocrinol Metab. 2006;291:E807–16. doi:10.1152/ajpendo.00591.2005. PMID:16720625.
  • Booth FW, Ruegsegger GN, Toedebusch RG, Yan Z. Endurance exercise and the regulation of skeletal muscle metabolism. Prog Mol Biol Trans Sci. 2015;135:129–51. doi:10.1016/bs.pmbts.2015.07.016.
  • Kang C, O'Moore KM, Dickman JR, Ji LL. Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive. Free Radic Biol Med. 2009;47:1394–400. doi:10.1016/j.freeradbiomed.2009.08.007. PMID:19686839.
  • Margolis LM, Pasiakos SM. Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis. Adv Nutr. 2013;4:657–64. doi:10.3945/an.113.004572. PMID:24228194.
  • Akagawa M, Nakano M, Ikemoto K. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Biosci Biotech Biochem. 2016;80:13–22.
  • Stites T, Storms D, Bauerly K, Mah J, Harris C, Fascetti A, Rogers Q, Tchaparian E, Satre M, Rucker RB. Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J Nutr. 2006;136:390–6. doi:10.1093/jn/136.2.390. PMID:16424117.
  • Tao R, Karliner JS, Simonis U, Zheng J, Zhang J, Honbo N, Alano CC. Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes. Biochem Biophys Res Commun. 2007;363:257–62. doi:10.1016/j.bbrc.2007.08.041. PMID:17880922.
  • Rucker R, Chowanadisai W, Nakano M. Potential physiological importance of pyrroloquinoline quinone. Alt Med Rev. 2009;14:268–77.
  • Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1 a expression. J Biol Chem. 2010;285:142–52. doi:10.1074/jbc.M109.030130. PMID:19861415.
  • Bauerly K, Harris C, Chowanadisai W, Graham J, Havel PJ, Tchaparian E, Satre M, Karliner JS, Rucker RB. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PLoS One. 2011;6:e21779. doi:10.1371/journal.pone.0021779. PMID:21814553.
  • Kuo YT, Shih PH, Kao SH, Yeh GC, Lee HM. Pyrroloquinoline quinone resists denervation-induced skeletal atrophy by activating PGC-1 a and integrating mitochondrial electron transport chain complexes. PLoS ONE. 2015;10:e0143600. doi:10.1371/journal.pone.0143600. PMID:26646764.
  • Kumazawa T, Sato K, Seno H, Ishii A, Suzuki O. Levels on pyrroloquinoine quinone in various foods. Biochem J. 1995;307:331–3. doi:10.1042/bj3070331. PMID:7733865.
  • Misra HS, Rajpurohit YS, Khairnar NP. Pyrroloquinoline-quinone and its versatile roles in biological processes. J Biosci. 2012;37:313–25. doi:10.1007/s12038-012-9195-5. PMID:22581337.
  • Cho Y, Hazen BC, Russell AP, Kralli A. Peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1)- and estrogen-related receptor (ERR)-induced regulator in muscle 1 (PERM1) is a tissue-specific regulator of oxidative capacity in skeletal muscle cells. J Biol Chem. 2013;288:25207–18. doi:10.1074/jbc.M113.489674. PMID:23836911.
  • Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM. Activation of PPARgamma coactivator-1 through transcription factor docking. Science. 1999;286. 1368–71. doi:10.1126/science.286.5443.1368. PMID:10558993.
  • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005;280:19587–93. doi:10.1074/jbc.M408862200. PMID:15767263.
  • Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA. 2003;100:7111–6. doi:10.1073/pnas.1232352100. PMID:12764228.
  • Kupr B, Handschin C. Complex coordination of cell plasticity by a PGC-1 a-controlled transcriptional network in skeletal muscle. Front Physiol. 2015;6:325. doi:10.3389/fphys.2015.00325. PMID:26617528.
  • Palikaras K, Tavernarakis N. Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol. 2014;56:182–8. doi:10.1016/j.exger.2014.01.021. PMID:24486129.
  • Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88:611–38. doi:10.1152/physrev.00025.2007. PMID:18391175.
  • Bestwick, ML., Shadel, GS. Accessorizing the human mitochondrial transcription machinery. Trends Biochem Sci. 2013;38:283–91. doi:10.1016/j.tibs.2013.03.006. PMID:23632312.
  • Gordon JW, Rungi AA, Inagaki H, Hood DA. Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol. 2001;90:389–96. doi:10.1152/jappl.2001.90.1.389. PMID:11133932.
  • Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1 a content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011;286:10605–17. doi:10.1074/jbc.M110.211466. PMID:21245132.
  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–24. doi:10.1016/S0092-8674(00)80611-X. PMID:10412986.
  • Dominy JE, Puigserver P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol. 2013;5:1–16. doi:10.1101/cshperspect.a015008. PMID:23818499.
  • Ichida M, Nemoto S, Finkel T. Identification of a specific molecular repressor of the peroxisome proliferatoractivated receptor gamma coactivator-1 alpha (PGC-1alpha). J Biol Chem. 2002;277:50991–5. doi:10.1074/jbc.M210262200. PMID:12397057.
  • Hood DA, Tryon LD, Carter HN, Kim Y, Chen CCW. Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J. 2016;473:2295–314. doi:10.1042/BCJ20160009. PMID:27470593.
  • Winder WW, Taylor EB, Thomson DM. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Med Sci Sports Exerc. 2006;38:1945–49. doi:10.1249/01.mss.0000233798.62153.50. PMID:17095928.
  • Yan Z. Exercise, PGC-1 a and metabolic adaptation in skeletal muscle. Appl Physiol Nutr Metab. 2009;34:424–7. doi:10.1139/H09-030. PMID:19448709.
  • Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;104:12017–22. doi:10.1073/pnas.0705070104. PMID:17609368.
  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliot PJ, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature. 2009;458:1056–60. doi:10.1038/nature07813. PMID:19262508.
  • Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH, Kleinert M, Humphrey SJ, Yang P, Holliday M, Trefely S, Fazakerley DJ, et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 2015;22:922–35. doi:10.1016/j.cmet.2015.09.001. PMID:26437602.
  • Zhang Y, Uguccioni G, Ljubicic V, Irrcher I, Iqbal S, Singh K, Ding S, Hood DA. Multiple signaling pathways regulate contractile activity-mediated PGC-1α gene expression and activity in skeletal muscle cells. Physiol Rep. 2014;2:1–12. doi:10.14814/phy2.12008.
  • Yan Z, Li P, Akimoto T. Transcriptional control of the Pgc-1alpha gene in skeletal muscle in vivo. Exerc Sport Sci Rev. 2007;35:97–101. doi:10.1097/JES.0b013e3180a03169. PMID:17620927.
  • Duine JA, van der Meer RA, Groen BW. The cofactor pyrroloquinoline quinone. Annu Rev Nutr. 1990;10:297–318. doi:10.1146/annurev.nu.10.070190.001501. PMID:2166547.
  • Itoh S, Kato N, Ohshiro Y, Agawa T. Catalytic oxidation of thiols by coenzyme PQQ. Chem Lett. 1985;14:135–6. doi:10.1246/cl.1985.135.
  • Itoh S, Kato N, Mure M, Ohshiro Y. Kinetic studies on the oxidation of thiols by coenzyme PQQ. Bull Chem Soc Jpn. 1987;60:420–2. doi:10.1246/bcsj.60.420.
  • Ishii T, Akagawa M, Naito Y, Handa O, Takagi T, Mori T, Kumazawa S, Yoshikawa T, Nakayama T. Pro-oxidant action of pyrroloquinoline quinone: characterization of protein oxidative modifications. Biosci Biotechnol Biochem. 2010;74:663–6. doi:10.1271/bbb.90764. PMID:20208375.
  • Salisbury SA, Forrest HS, Cruse WB, Kennard O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature. 1978;280:843–84. doi:10.1038/280843a0.
  • Westerling J, Frank J, Duine JA. The prosthetic group of methanol dehydrogenase from Hyphomicrobium X electron spin resonance evidence for a quinone structure. Biochem Biophys Res Commun. 1979;87:719–24. doi:10.1016/0006-291X(79)92018-7. PMID:222269.
  • Matsumura H, Umezawa K, Takeda K, Sugimoto N, Ishida T, Samejima M, Ohno H, Yoshida M, Igarashi K, Nakamura N. Discovery of a eukaryotic pyrroloquinoline quinone-dependent oxidoreductase belonging to a new auxiliary activity family in the database of carbohydrate-active enzymes. PLoS ONE. 2014;9:e104851. doi:10.1371/journal.pone.0104851. PMID:25121592.
  • Ameyama M, Nonobe M, Shinagawa E, Matsushita K, Adachi O. Method of enzymatic determination of pyrroloquinoline quinone. Anal Biochem. 1985;151:263–7. doi:10.1016/0003-2697(85)90174-5. PMID:3913327.
  • Killgore J, Smidt C, Duich L, Romero-Chapman N, Tinker D, Reiser K, Melko M, Hyde D, Rucker RB. Nutritional importance of pyrroloquinoline quinone. Science. 1989;245:850–2. doi:10.1126/science.2549636. PMID:2549636.
  • Klinman JP, Bonnot F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chem Rev. 2014;114:4343–65. doi:10.1021/cr400475g. PMID:24350630.
  • Kasahara T, Kato T. A new redox-cofactor vitamin for mammals. Nature. 2003;422:832. doi:10.1038/422832a. PMID:12712191.
  • Felton LM, Anthony C. Role of PQQ as a mammalian enzyme cofactor? Nature. 2005;433:e10. doi:10.1038/nature03322. PMID:15689995.
  • Rucker R, Storms D, Sheets A, Tchaparian E, Fascetti A. Is pyrroloquinoline quinone a vitamin. Nature. 2005;433:E10–1. doi:10.1038/nature03323. PMID:15689994.
  • Kumazawa T, Seno H, Suzuki O. Failure to verify high levels of pyrroloquinoline quinone in eggs and skim milk. Biochem Biophys Res Commun. 1993;193:1–5. doi:10.1006/bbrc.1993.1581. PMID:8389143.
  • Noji N, Nakamura T, Kitahata N, Taguchi K, Kudo T, Yoshida S, Tsujimoto M, Sugiyama T, Asami T. Simple and sensitive method for pyrroloquinoline quinone (PQQ) analysis in various foods using liquid chromatography/electrospray ionization tandem mass spectrometry. J Agric Food Chem. 2007;55:7258–63. doi:10.1021/jf070483r. PMID:17685628.
  • Harris CB, Chowanadisai W, Mishchuk DO, Satre MA, Slupsky CM, Rucker RB. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem. 2013;24:2076–84. doi:10.1016/j.jnutbio.2013.07.008. PMID:24231099.
  • Puehringer S, Metlitzky M, Schwarzenbacher R. The pyrroloquinoline quinone biosynthesis pathway revisited: A structural approach. BMC Biochem. 2008;9:8. doi:10.1186/1471-2091-9-8. PMID:18371220.
  • Matsushita K, Arents JC, Bader R, Yamada M, Adachi O, Postma PW. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology. 1997;143:3149–56. doi:10.1099/00221287-143-10-3149. PMID:9353919.
  • Smidt CR, Bean-Knudsen D, Kirsch DG, Rucker RB. Does the intestinal microflora synthesize pyrroloquinoline quinone? Biofactors. 1991;3:53–59. PMID:1647778.
  • Kumazawa T, Hiwasa T, Takiguchi M, Suzuki O, Sato K. Activation of Ras signaling pathways by pyrroloquinoline quinone in NIH3T3 mouse fibroblasts. Int J Mol Med. 2007;19:765–70. PMID:17390081.
  • Ouchi A, Nakano M, Nagaoka SI, Mukai K. Kinetic study of the antioxidant activity of pyrroloquinolinequinol (PQQH2, a reduced form of pyrroloquinolinequinone) in micellar solution. J Agr Food Chem. 2009;57:450–6. doi:10.1021/jf802197d.
  • Nunome K, Miyazaki S, Nakano M, Iguchi-Ariga S, Ariga H. Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1. Biol Pharm Bull. 2008;31:1321–6. doi:10.1248/bpb.31.1321. PMID:18591768.
  • Zhu BQ, Zhou HZ, Teerlink JR, Karliner JS. Pyrroloquinoline quinone (PQQ) decreases myocardial infarct size and improves cardiac function in rat models of ischemia and ischemia/reperfusion. Cardiovasc Drugs Ther. 2004;18:421–31. doi:10.1007/s10557-004-6219-x. PMID:15770429.
  • Trchaparian E, Marshal L, Cutler G, Bauerly K, Chowanadisai W, Satre M, Harris C, Rucker RB. Identification of transcriptional networks responding to pyrroloquinoline quinone dietary supplementation and their influence on thioredoxin expression, and the JAK/STAT and MAPK pathways. Biochem J. 2010;429:515–26. doi:10.1042/BJ20091649. PMID:20491655.
  • Bauerly KA, Storms DH, Haiirs CB, Hajuzadeh S, Sun MY, Cheung CP, Satre M A, Fascetti AJ, Tchaparian E, Rucker RB. Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat. Biochimica et Biophysica Acta. 2006;1760:1741–8. doi:10.1016/j.bbagen.2006.07.009. PMID:17029795.
  • Steinberg F, Stites TE, Anderson P, Storms D, Chan I, Eghbali S, Rucker R. Pyrroloquinoline quinone improves growth and reproductive performance in mice fed chemically defined diets. Exp Biol Med (Maywood). 2003;228:160–6. doi:10.1177/153537020322800205. PMID:12563022.
  • Mukai K, Ouchi A, Nakano M. Kinetic study of the quenching reaction of singlet oxygen by pyrroloquinolinequinol (PQQH2, a reduced form of pyrroloquinolinequinone) in micellar solution. J Agri Food Chem. 2011;59:1705–12. doi:10.1021/jf104420y.
  • Ouchi A, Ikemoto K, Nakano M, Nagaoka S, Mukai K. Kinetic study of aroxyl radical scavenging and α-tocopheroxyl regeneration rates of pyrroloquinolinequinol (PQQH2, a reduced form of pyrroloquinolinequinone) in dimethyl sulfoxide solution: Finding of synergistic effect on the reaction rate due to the coexistence of α-tocopherol and PQQH2. J Agric Food Chem. 2013;61:11048–60. doi:10.1021/jf4040496. PMID:24175624.
  • Stites TE, Mitchell AE, Rucker RB. Physiological importance on quinoenzymes and the O-Quinone family of cofactors. J Nutr. 2000;130:719–27. doi:10.1093/jn/130.4.719. PMID:10736320.
  • He K, Nukada H, Urakami T, Murphy MP. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): Implications for its function in biological systems. Biochem Pharmacol. 2003;65:67–74. doi:10.1016/S0006-2952(02)01453-3. PMID:12473380.
  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276:4588–96. doi:10.1074/jbc.M009093200. PMID:11092892.
  • Wu JZ, Huang JH, Khanabdali R, Kalionis B, Xia SJ, Cai WJ. Pyrroloquinoline quinone enhances the resistance to oxidative stress and extends lifespan upon DAF-16 and SKN-1 activities in C. elegans. Experimental Gerontology. 2016;80:43–50. doi:10.1016/j.exger.2016.04.008. PMID:27090484.
  • Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol. 2016;594:5135–47.
  • Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Viña J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radical Biology and Medicine. 2015;86:37–46. doi:10.1016/j.freeradbiomed.2015.04.006. PMID:25889822.
  • Webb R, Hughes MG, Thomas AW, Morris K. The ability of exercise-associated oxidative stress to trigger redox-sensitive signaling responses. Antioxidants (Basel). 2017;6:63. doi:10.3390/antiox6030063.
  • Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc. 2011;43:1017–24. doi:10.1249/MSS.0b013e318203afa3. PMID:21085043.
  • Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, Viña J. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87:142–9. doi:10.1093/ajcn/87.1.142. PMID:18175748.
  • Paulsen G, Cumming KT, Holden G, Hallen J, Ronnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomized, controlled trial. J Physiol. 2014;592:1887–901. doi:10.1113/jphysiol.2013.267419. PMID:24492839.
  • Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA. 2009;106:8665–70. doi:10.1073/pnas.0903485106. PMID:19433800.
  • Saihara K, Kamikubo R, Ikemoto K, Uchida K, Akagawa M. Pyrroloquinoline quinone, a redox-active o-quinone, stimulates mitochondrial biogenesis by activating the SIRT1/PGC-1 a signaling pathway. Biochemistry. 2017;56:6615–25. doi:10.1021/acs.biochem.7b01185. PMID:29185343.
  • Yamaguchi K, Sasano A, Urakami T, Tsuji T, Kondo K. Stimulation of nerve growth factor production by pyrroloquinoline quinone and its derivatives in vitro and in vivo. Biosci Biotech Biochem. 1993;57:1231–3. doi:10.1271/bbb.57.1231.
  • Ohwada K, Takeda H, Yamazaki M, Isogai H, Nakano M, Shimomura M, Fukui K, Urano S. Pyrroloquinoline quinone (PQQ) prevents cognitive deficit caused by oxidative stress in rats. J Clin Biochem Nutr. 2008;42:29–34. doi:10.3164/jcbn.2008005. PMID:18231627.
  • Nakano M, Yamamoto T, Okumura H, Tsuda A, Kowatari Y. Effects of oral supplementation with pyrroloquinoline quinone on stress, fatigue, and sleep. Funct. Foods Health Dis. 2012;2:307–24.
  • Nakano M, Kamimura A, Watanabe F, Kamiya T, Watanabe D, Yamamoto E, Fukagawa M, Hasumi K, Suzuki E. Effects of orally administered pyrroloquinoline quinone disodium salt on dry skin conditions in mice and healthy female subjects. J Nutr Sci Vitaminol. 2015;61:242–7. doi:10.3177/jnsv.61.241.
  • Nakano M, Kawasaki Y, Suzuki N, Takara T. Effects of pyrroloquinoline quinone disodium salt intake on the serum cholesterol levels of healthy Japanese adults. J Nutr Sci Vitaminol. 2015;61:234–41. doi:10.3177/jnsv.61.233.
  • D'Amico G, Bazzi C. Urinary protein and enzyme excretion as markers of tubular damage. Curr Opin Nephrol Hypertens. 2003;12:639–43. doi:10.1097/00041552-200311000-00011. PMID:14564202.
  • Nakano M, Suzuki H, Imamura T, Lau A, Lynch B. Genotoxicity of pyrroloquinoline quinone (PQQ) disodium salt (BioPQQ™). Regulatory Toxicology and Pharmacology. 2014;67:189–97. doi:10.1016/j.yrtph.2013.07.007.
  • Watanabe A, Hobara N, Ohsawa T, Higashi T, Tsuji T. Nephrotoxicity of pyrroloquinoline quinone in rats. Hiroshima J Med Sci. 1989;38:49–51. PMID:2546903.
  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–22. doi:10.1016/j.cell.2006.11.013. PMID:17112576.
  • Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventos RM, Berenguer T, Jakszyn P, Martínez C, Sánchez MJ, Navarro C, Chirlaque MD, Tormo MJ, et al. Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population: European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Br J Nutr. 2008;100:188–96. doi:10.1017/S0007114507882997. PMID:18096094.
  • Mitchell AE, Jones AD, Mercer RS, Rucker RB. Characterization of pyrroloquinoline quinone amino acid derivatives by electrospray ionization mass spectrometry and detection in human milk. Anal Biochem. 1999;269:317–25. doi:10.1006/abio.1999.4039. PMID:10222004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.