12
Views
4
CrossRef citations to date
0
Altmetric
POSTERS

Synthesis and Biological Activity of 3′-Modified 2′-5′ Adenylate Trimers

, , , &
Pages 443-444 | Published online: 05 Dec 2006
 

Abstract

One of the most important mediators in the mode of action of interferon is the (2′-5′)(A)n synthetase-RNase L pathway. The 2′-5′oligoadenylates (2–5A), synthesized from ATP, activate a pre-existing endonuclease that cleaves single-stranded RNA. The biological activity of 2–5A is rapidly lost due to cleavage of the 2′-5′ internucleotide bond by a specific 2′-5′-phosphodiesterase starting at the 3′end. This rapid cleavage and the poor uptake of 2–5A in intact cells limit the use of 2–5A as an antiviral or antineoplastic agent. Although several modified 2–5A analogues have been synthesized in order to improve the enzymatic stability, only few have proven to be resistant to degradation and still able to activate the 2–5A dependent endonuclease. 1-4 On the other hand, relative drastic methodology such as calcium coprecipitation, microinjection and liposome encapsulation5 has been used to introduce 2–5A into intact cells. Here, we present the synthesis and biological activity of oligoadenylates in which one or more adenosine residues were replaced by 9-(3-azido-3-deoxy-6-D-xylofuranosyl)adenine or 9-(3-amino-3-deoxy-D-xylofuranosyl)adenine. The oligonucleotides were synthesized by the phosphotriester method with triisopropylbenzenesulfonyl-chloride in the presence of N-methylimidazole as the condensing agent. The p-nitrophenylethyl group was used as the protecting group for the 2′-hydroxylfunction .(carbonate), the internucleotide linkage (phosphate ester) and the exocyclic amino groups of the heterocyclic base (carbamate). Bis(p-nitrophenylethy1)phosphoromonochloridate was used to phosphorylate the 5′-hy-droxyl group. All these blocking groups were removed with DBU in pyridine.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.