16
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Design of Sequence-Specific DNA Binding Ligands That Use a Two-Stranded Peptide Motif for DNA Sequence Recognition

, , , , , , , , & show all
Pages 31-47 | Received 07 Jun 1996, Published online: 21 May 2012
 

Abstract

The design and DNA binding activity of β-structure-forming peptides and netropsin-peptide conjugates are reported. It is found that a pair of peptides - S,S'-bis(Lys-Gly-Val-Cys-Val- NH-NH-Dns) - bridged by an S-S bond binds at least 10 times more strongly to poly(dG)•poly(dC) than to poly(dA)•poly(dT). This peptide can also discriminate between 5′-GpG-3′ and 5′-GpC-3′ steps in the DNA minor groove. Based on these observations, new synthetic ligands, bis-netropsins, were constructed in which two netropsin-like fragments were attached by means of short linkers to a pair of peptides - Gly-Cys-Gly- or Val-Cys-Val - bridged by S-S bonds. These compounds possess a composite binding specificity: the peptide chains recognize 5′-GpG-3′ steps on DNA, whereas the netropsin-like fragments bind preferentially to tuns of 4 AT base pairs. Our data indicate that combining the AT-base-pair specific properties of the netropsin-type structure with the 5′-GpG-3′-specific properties of certain oligopeptides offers a new approach to the synthesis of ligands capable of recognizing mixed sequences of AT- and GC-base pairs in the DNA minor groove. These compounds are potential models for DNA-binding domains in proteins which specifically recognize base pair sequences in the minor groove of DNA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.