12
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

DNA Curvature and Phosphate Neutralization: An Important Aspect of Specific Protein Binding

&
Pages 605-618 | Received 21 Aug 1998, Published online: 21 May 2012
 

Abstract

A theoretical study is presented of the influence of salt bridges between protein cationic side chains and DNA phosphates on DNA conformation and flexibility. Two DNA sequences are studied containing respectively the HNF3 and CAP binding sites. The effect of salt bridges is modelled by the neutralisation of net phosphate charges for the groups involved in such interactions in the complex. Energy optimised conformations are obtained by molecular mechanics calculations using the JUMNA program. Base sequence dependence is studied by moving the phosphate neutralisation pattern along the sequence, while normal mode analysis is used to evaluate DNA flexibility. The results show that phosphate neutralisation has a strong influence on DNA conformation. For the HNF3 binding sequence, the free oligomer is bent in direction very different from that observed in the protein complex. Phosphate neutralisation changes this direction by 45° to within only 4° of the direction in the complex, without changing the bending angle. For the CAP binding sequence, the free oligomer is already intrinsically curved in the direction favoured by the protein, but phosphate neutralisation increases the bending angle. For both oligomers studied these effects are strongly sequence dependent. It is also shown that oligomer flexibility cannot be explained by a simple superposition of the properties of successive dinucleotide steps. Important long range coupling effects are observed. However, for both sequence studied, phosphate neutralisation however leads to a reduction in oligomer flexibility.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.