17
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Brownian and Essential Dynamics Studies of the HIV-1 Integrase Catalytic Domain

, , , , &
Pages 733-745 | Received 03 Nov 1998, Published online: 21 May 2012
 

Abstract

The three-dimensional structure of the active site region of the enzyme HIV-1 integrase is not unambiguously known. This region includes a flexible peptide loop that cannot be well resolved in crystallographic determinations. Here we present two different computional approaches with different levels of resolution and on different time-scales to understand this flexibility and to analyze the dynamics of this part of the protein. We have used molecular dynamics simulations with an atomic model to simulate the region in a realistic and reliable way for 1 ns. It is found that parts of the loop wind up after 300 ps to extend an existing helix. This indicates that the helix is longer than in the earlier crystal structures that were used as basis for this study. Very recent crystal data confirms this finding, underlining the predictive value of accurate MD simulations. Essential dynamics analysis of the MD trajectory yields an anharmonic motion of this loop. We have supplemented the MD data with a much lower resolution Brownian dynamics simulation of 600 ns length. It provides ideas about the slow-motion dynamics of the loop. It is found that the loop explores a conformational space much larger than in the MD trajectory, leading to a “gating”-like motion with respect to the active site.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.