257
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Prevalent Mutations of Human Prion Protein: A Molecular Modeling and Molecular Dynamics Study

, , &
Pages 379-389 | Received 04 Jan 2011, Published online: 15 May 2012
 

Abstract

Point mutations in the human prion protein gene, leading to amino acid substitutions in the human prion protein contribute to conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker disease (GSS), and fatal familial insomnia. We have investigated impressions of prevalent mutations including Q217R, D202N, F198S, on the human prion protein and compared the mutant models with wild types. Structural analyses of models were performed with molecular modeling and molecular dynamics simulation methods. According to our results, frequently occurred mutations are observed in conserved and fully conserved sequences of human prion protein and the most fluctuation values occur in the Helix 1 around residues 144–152 and C-terminal end of the Helix 2. Our analysis of results obtained from MD simulation clearly shows that this long-range effect plays an important role in the conformational fluctuations in mutant structures of human prion protein. Results obtained from molecular modeling such as creation or elimination of some hydrogen bonds, increase or decrease of the accessible surface area and molecular surface, loss or accumulation of negative or positive charges on specific positions, and altering the polarity and pKa values, show that amino acid point mutations, though not urgently change the stability of PrP, might have some local impacts on the protein interactions which are required for oligomerization into fibrillar species.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.