265
Views
18
CrossRef citations to date
0
Altmetric
Articles

Investigation of silent information regulator 1 (Sirt1) agonists from Traditional Chinese Medicine

, , , , &
Pages 1207-1218 | Received 11 Aug 2012, Accepted 29 Aug 2012, Published online: 17 Oct 2012
 

Abstract

Silent information regulator 1 (Sirt1), a class III nicotinamide adenine dinucleotide dependent histone deacetylases, is important in cardioprotection, neuroprotection, metabolic disease, calorie restriction, and diseases associated with aging. Traditional Chinese Medicine (TCM) compounds from TCM Database@Taiwan (http://tcm.cmu.edu.tw/) were employed for screening potent Sirt1 agonists, and molecular dynamics (MD) simulation was implemented to simulate ligand optimum docking poses and protein structure under dynamic conditions. TCM compounds such as (S)-tryptophan-betaxanthin, 5-O-feruloylquinic acid, and RosA exhibited good binding affinity across different computational methods, and their drug-like potential were validated by MD simulation. Docking poses indicate that the carboxylic group of the three candidates generated H-bonds with residues in the protein chain from Ser441 to Lys444 and formed H-bond, π–cation interactions, or hydrophobic contacts with Phe297 and key active residue, His363. During MD, stable π–cation interactions with residues Phe273 or Arg274 were formed by (S)-tryptophan-betaxanthin and RosA. All candidates were anchored to His363 by stable π- or H-bonds. Hence, we propose (S)-tryptophan-betaxanthin, 5-O-feruloylquinic acid, and RosA as potential lead compounds that can be further tested in drug development process for diseases associated with aging

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:28

Acknowledgments

The research was supported by grants from the National Science Council of Taiwan (NSC101-2325-B-039-001), Asia University (100-asia-56), and China Medical University and Asia University (DMR-101-094, asia100-cmu-2). This study is also supported in part by Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH101-TD-B-111-004) and Taiwan Department of Health Cancer Research Center of Excellence (DOH101-TD-C-111-005). We are grateful to Asia University for computer time and facilities. We also wish to express thanks to Dr Tu-Liang Lin for developing and granting access to LigandPath.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.