265
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

How do mutations and allosteric inhibitors modulate caspase-7 activity? A molecular dynamics study

, &
Pages 3456-3466 | Received 18 Jul 2018, Accepted 21 Aug 2018, Published online: 17 Nov 2018
 

Abstract

Caspases are members of a highly regulated aspartate-cysteine protease family which have important roles in apoptosis. Pharmaceutical studies focused on these molecules since they are involved in diseases such as cancer and neurodegenerative disorders. A small molecule which binds to the dimeric interface away from the binding site induces a conformational change that resembles the pro-caspase form of the molecule by shifting loop positions. The fluctuation mechanisms caused by mutations or binding of a ligand can explain the key mechanism for the function of that molecule. In this study, we performed molecular dynamics simulations on wild-type and mutated structures (C290N, R187M, Y223A, G188L and G188P) as well as allosterically inhibited structure (DICA-bound caspase-7) to observe the effects of the single mutations on intrinsic dynamics. The results show that previously known changes in catalytic activity upon mutations or allosteric ligand binding are reflected in corresponding changes in the global dynamics of caspase-7.

Communicated by Ramaswamy H. Sarma

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.