265
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

How do mutations and allosteric inhibitors modulate caspase-7 activity? A molecular dynamics study

, &
Pages 3456-3466 | Received 18 Jul 2018, Accepted 21 Aug 2018, Published online: 17 Nov 2018

References

  • Agniswamy, J., Fang, B., & Weber, I. T. (2009). Conformational similarity in the activation of caspase-3 and -7 revealed by the unliganded and inhibited structures of caspase-7. Apoptosis, 14(10), 1135–1144. doi:10.1007/s10495-009-0388-9
  • Amadei, A., Ceruso, M. A., & Di Nola, A. (1999). On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of proteins’ molecular dynamics simulations. Proteins: Structure, Function, and Genetics, 36(4), 419–424.
  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17(4), 412–425. doi:10.1002/prot.340170408
  • Amaro, R. E., Sethi, A., Myers, R. S., Davisson, V. J., & Luthey-Schulten, Z. A. (2007). A network of conserved interactions regulates the allosteric signal in a glutamine amidotransferase. Biochemistry, 46(8), 2156–2173. doi:10.1021/bi061708e
  • Andre, I., Strauss, C. E. M., Kaplan, D. B., Bradley, P., & Baker, D. (2008). Emergence of symmetry in homooligomeric biological assemblies. Proceedings of the National Academy of Sciences, 105(42), 16148–16152. doi:10.1073/pnas.0807576105
  • Bahar, I., Lezon, T. R., Bakan, A., & Shrivastava, I. H. (2010). Normal mode analysis of biomolecular structures: Functional mechanisms of membrane proteins. Chemical Reviews, 110(3), 1463–1497. doi:10.1021/cr900095e
  • Bahar, I., Lezon, T. R., Yang, L.-W., & Eyal, E. (2010). Global dynamics of proteins: Bridging between structure and function. Annual Review of Biophysics, 39(1), 23–42. doi:10.1146/annurev.biophys.093008.131258
  • Bakan, A., & Bahar, I. (2009). The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14349–14354. doi:10.1073/pnas.0904214106
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.
  • Boatright, K. M., Renatus, M., Scott, F. L., Sperandio, S., Shin, H., Pedersen, I. M., … Salvesen, G. S. (2003). A unified model for apical caspase activation. Molecular Cell, 11(2), 529–541. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12620239
  • Bradley, M. J., Chivers, P. T., & Baker, N. A. (2008). Molecular dynamics simulation of the Escherichia coli NikR protein: Equilibrium conformational fluctuations reveal interdomain allosteric communication pathways. Journal of Molecular Biology, 378(5), 1155–1173. doi:10.1016/j.jmb.2008.03.010
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. doi:10.1002/jcc.21287
  • Cade, C. E., & Clark, A. C. (2015). Caspases – Key players in apoptosis. In: K. Bose (Ed.), Proteases in apoptosis: Pathways, protocols and translational advances (pp. 31–51). Cham: Springer International Publishing. doi:10.1007/978-3-319-19497-4_2
  • Cade, C., Swartz, P., MacKenzie, S. H., & Clark, A. C. (2014). Modifying caspase-3 activity by altering allosteric networks. Biochemistry, 53(48), 7582–7595. doi:10.1021/bi500874k
  • Chai, J., Wu, Q., Shiozaki, E., Srinivasula, S. M., Alnemri, E. S., & Shi, Y. (2001). Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding. Cell, 107(3), 399–407. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11701129
  • Daily, M. D., & Gray, J. J. (2007). Local motions in a benchmark of allosteric proteins. Proteins: Structure, Function, and Bioinformatics, 67(2), 385–399. doi:10.1002/prot.21300
  • Dassault Systèmes BIOVIA. (2016). Discovery Studio Modeling Environment, Release 2017. San Diego, CA: Dassault Systèmes.
  • Edinger, A. L., & Thompson, C. B. (2004). Death by design: Apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 16(6), 663–669. doi:10.1016/j.ceb.2004.09.011
  • Elliott, J. M., Rouge, L., Wiesmann, C., & Scheer, J. M. (2009). Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. Journal of Biological Chemistry, 284(10), 6546–6553. doi:10.1074/jbc.M806121200
  • Fuchs, J. E., von Grafenstein, S., Huber, R. G., Wallnoefer, H. G., & Liedl, K. R. (2014). Specificity of a protein-protein interface: Local dynamics direct substrate recognition of effector caspases. Proteins: Structure, Function, and Bioinformatics, 82(4), 546–555. doi:10.1002/prot.24417
  • Greener, J. G., & Sternberg, M. J. (2018). Structure-based prediction of protein allostery. Current Opinion in Structural Biology, 50, 1–8. doi:10.1016/j.sbi.2017.10.002
  • Guo, J., & Zhou, H.-X. (2016). Protein allostery and conformational dynamics. Chemical Reviews, 116(11), 6503–6515. doi:10.1021/acs.chemrev.5b00590
  • Häcker, H.-G., Sisay, M. T., & Gütschow, M. (2011). Allosteric modulation of caspases. Pharmacology & Therapeutics, 132(2), 180–195. doi:10.1016/j.pharmthera.2011.07.003
  • Hardy, J. A., Lam, J., Nguyen, J. T., O'Brien, T., & Wells, J. A. (2004). Discovery of an allosteric site in the caspases. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12461–12466. doi:10.1073/pnas.0404781101
  • Hardy, J. A., & Wells, J. A. (2004). Searching for new allosteric sites in enzymes. Current Opinion in Structural Biology, 14(6), 706–715. doi:10.1016/j.sbi.2004.10.009
  • Hardy, J. A., & Wells, J. A. (2009). Dissecting an allosteric switch in caspase-7 using chemical and mutational probes. Journal of Biological Chemistry, 284(38), 26063–26069. doi:10.1074/jbc.M109.001826
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38, 27–28.
  • Jubb, H. C., Higueruelo, A. P., Ochoa-Montaño, B., Pitt, W. R., Ascher, D. B., & Blundell, T. L. (2017). Arpeggio: A web server for calculating and visualising interatomic interactions in protein structures. Journal of Molecular Biology, 429(3), 365–371. doi:10.1016/j.jmb.2016.12.004
  • Kang, H. J., Lee, Y., Jeong, M. S., Kim, M., Bae, K., Kim, S. J., & Chung, S. J. (2012). Molecular insight into the role of the leucine residue on the L2 loop in the catalytic activity of caspases 3 and 7. Bioscience Reports, 32(3), 305–313. doi:10.1042/BSR20120009
  • Kurkcuoglu, Z., Bakan, A., Kocaman, D., Bahar, I., & Doruker, P. (2012). Coupling between catalytic loop motions and enzyme global dynamics. PLoS Computational Biology, 8(9), e1002705. doi:10.1371/journal.pcbi.1002705
  • Li, C., Banfield, M. J., & Dennison, C. (2007). Engineering copper sites in proteins: Loops confer native structures and properties to chimeric cupredoxins. Journal of the American Chemical Society, 129(3), 709–718. doi:10.1021/ja0661562
  • Liu, J., & Nussinov, R. (2016). Allostery: An overview of its history, concepts, methods, and applications. PLOS Computational Biology, 12(6), e1004966. doi:10.1371/journal.pcbi.1004966
  • Maciag, J. J., Mackenzie, S. H., Tucker, M. B., Schipper, J. L., Swartz, P., & Clark, A. C. (2016). Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. Proceedings of the National Academy of Sciences, 113(41), E6080–E6088. doi:10.1073/pnas.1603549113
  • Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8(9), 741–752. doi:10.1038/nrm2239
  • McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5(4), a008656. doi:10.1101/cshperspect.a008656
  • Murray, J., & Renslo, A. R. (2013). Modulating caspase activity: Beyond the active site. Current Opinion in Structural Biology, 23(6), 812–819. doi:10.1016/j.sbi.2013.10.002
  • Nussinov, R., & Tsai, C.-J. (2013). Allostery in disease and in drug discovery. Cell, 153(2), 293–305. doi:10.1016/j.cell.2013.03.034
  • Nussinov, R., & Wolynes, P. G. (2014). A second molecular biology revolution? The energy landscapes of biomolecular function. Physical Chemistry Chemical Physics, 16(14), 6321. doi:10.1039/c4cp90027h
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. doi:10.1002/jcc.20289
  • Piana, S., & Rothlisberger, U. (2004). Molecular dynamics simulations of structural changes during procaspase 3 activation. Proteins: Structure, Function, and Bioinformatics, 55(4), 932–941. doi:10.1002/prot.20046
  • Piana, S., Taylor, Z., & Rothlisberger, U. (2005). Folding pathways for initiator and effector procaspases from computer simulations. Proteins: Structure, Function, and Bioinformatics, 59(4), 765–772. doi:10.1002/prot.20451
  • Renehan, A. G., Booth, C., & Potten, C. S. (2001). What is apoptosis, and why is it important? BMJ (Clinical Research Ed.), 322(7301), 1536–1538. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11420279
  • Ribeiro, A. A. S. T., & Ortiz, V. (2014). Determination of signaling pathways in proteins through network theory: Importance of the topology. Journal of Chemical Theory and Computation, 10(4), 1762. doi:10.1021/ct400977r
  • Ribeiro, A. A. S. T., & Ortiz, V. (2015). Energy propagation and network energetic coupling in proteins. The Journal of Physical Chemistry B, 119(5), 1835–1846. doi:10.1021/jp509906m
  • Riedl, S. J., Fuentes-Prior, P., Renatus, M., Kairies, N., Krapp, S., Huber, R., … Bode, W. (2001). Structural basis for the activation of human procaspase-7. Proceedings of the National Academy of Sciences, 98(26), 14790–14795. doi:10.1073/pnas.221580098
  • Serçinoğlu, O., & Ozbek, P. (2018). gRINN: A tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations. Nucleic Acids Research, 46(W1), W554–W562. doi:10.1093/nar/gky381
  • Sethi, A., Eargle, J., Black, A. A., & Luthey-Schulten, Z. (2009). Dynamical networks in tRNA:protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6620–6625. doi:10.1073/pnas.0810961106
  • Sethi, A., Tian, J., Derdeyn, C. A., Korber, B., & Gnanakaran, S. (2013). A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein. PLoS Computational Biology, 9(5), e1003046. doi:10.1371/journal.pcbi.1003046
  • Skliros, A., Zimmermann, M. T., Chakraborty, D., Saraswathi, S., Katebi, A. R., Leelananda, S. P., … Jernigan, R. L. (2012). The importance of slow motions for protein functional loops. Physical Biology, 9(1), 014001. doi:10.1088/1478-3975/9/1/014001
  • Sulpizi, M., Rothlisberger, U., & Carloni, P. (2003). Molecular dynamics studies of caspase-3. Biophysical Journal, 84(4), 2207–2215. doi:10.1016/S0006-3495(03)75026-7
  • Swapna, L. S., Srikeerthana, K., & Srinivasan, N. (2012). Extent of structural asymmetry in homodimeric proteins: Prevalence and relevance. PLoS One, 7(5), e36688. doi:10.1371/journal.pone.0036688
  • Thomas, M. E., Grinshpon, R., Swartz, P., & Clark, A. C. (2018). Modifications to a common phosphorylation network provide individualized control in caspases. The Journal of Biological Chemistry, 293(15), 5447–5461. doi:10.1074/jbc.RA117.000728
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., … Mackerell, A. D. (2009). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. doi:10.1002/jcc.21367
  • Vanommeslaeghe, K., & MacKerell, A. D. (2012). Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. Journal of Chemical Information and Modeling, 52(12), 3144–3154. doi:10.1021/ci300363c
  • Vanommeslaeghe, K., Raman, E. P., & MacKerell, A. D. (2012). Automation of the CHARMM general force field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. Journal of Chemical Information and Modeling, 52(12), 3155–3168. doi:10.1021/ci3003649
  • Walters, J., Schipper, J. L., Swartz, P., Mattos, C., & Clark, A. C. (2012). Allosteric modulation of caspase 3 through mutagenesis. Bioscience Reports, 32(4), 401. Retrieved from http://www.bioscirep.org/content/32/4/401
  • Witkowski, W. A., & Hardy, J. A. (2009). L2′ loop is critical for caspase-7 active site formation. Protein Science, 18(7), 1459–1468. doi:10.1002/pro.151
  • Yu, W., He, X., Vanommeslaeghe, K., & MacKerell, A. D. (2012). Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 33(31), 2451–2468. doi:10.1002/jcc.23067
  • Zimmermann, M. T., & Jernigan, R. L. (2012). Protein loop dynamics are complex and depend on the motions of the whole protein. Entropy, 14(4), 687–700. doi:10.3390/e14040687

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.