264
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of medicinal plant-associated biocontrol Bacillus subtilis (SSL2) by liquid chromatography-mass spectrometry and evaluation of compounds by in silico and in vitro methods

&
Pages 500-510 | Received 16 Dec 2018, Accepted 06 Feb 2019, Published online: 26 Mar 2019
 

Abstract

This study explores the antimicrobial properties of bioactive secondary metabolites extracted from the medicinal plant (Solanum surattense)-associated Bacillus subtilis strain SSL2. The secondary metabolites were extracted from B. subtilis (SSL2) using ethyl acetate, acetone, butanol, chloroform and methanol solvents. The crude extract was tested against two wilt causing pathogens: Ralstonia solanacearum and Fusarium oxysporum. The results revealed that the ethyl acetate extract has maximum inhibition against both the pathogens tested in this study. Furthermore, liquid chromatography-mass spectrometry (LC-MS) analysis of ethyl acetate extract identified 80 different compounds based on mass-to-charge ratio, database difference, resolution of mass spectrum and so on. Among the 80 compounds, citrulline (m/z = 158.0917), chloramphenicol (m/z = 195.075) and carnitine (m/z 162.11) were further selected based on m/z ratio for in silico and in vitro analyses. The in silico analysis revealed that citrulline, chloramphenicol and carnitine inhibited the virulent genes phcA (R. solanacearum) and ste12 (F. oxysporum). Further, under in vitro condition, citrulline and chloramphenicol were found to inhibit the growth of R. solanacearum and F. oxysporum. On the basis of the biocontrol activity of B. subtilis (SSL2) in in silico and in vitro conditions, the bacteria could be used as a biocontrol agent against both bacterial and fungal wilt-causing pathogens. However, this needs to be tested in pot studies or field conditions before being used as biocontrol agents.

Communicated by Ramaswamy H. Sarma

Acknowledgments

The financial support from the B. U. Patel Doctoral Fellowship Scheme, UKa Tarsadia University (UTU), Bardoli, Gujarat, India is gratefully acknowledged. The authors thank the management of UTU for support and providing facility to carry out the work. The authors are also grateful to IIT Bombay—SAIF for high-resolution LC-MS analysis studies.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.