217
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

The structural basis of the autoinhibition mechanism of glycogen synthase kinase 3β (GSK3β): molecular modeling and molecular dynamics simulation studies

, , , &
Pages 1741-1750 | Received 21 Mar 2019, Accepted 01 May 2019, Published online: 16 May 2019
 

Abstract

The autoinhibition phenomenon has been frequently observed in enzymes and represents an important regulatory strategy to fine-tune enzyme activity. Evolution has exploited this mechanism to reduce enzymatic activity. Glycogen synthase kinase 3β (GSK3β) undergoes autoinhibition via the phosphorylation of Ser9 at the N-terminus of the kinase, which, acting as a pseudosubstrate, occupies the catalytic domain of GSK3β and subsequently blocks primed substrates from having access to the catalytic domain. The detailed structural basis of the autoinhibition mechanism of GSK3β by the pseudosubstrate, however, has not yet been fully resolved. Here, a three-dimensional model of the binary GSK3β-pseudosubstrate complex was built via the molecular modeling method. Based on the constructed model, extensive molecular dynamics (MD) simulations and subsequent molecular mechanics generalized Born/surface area (MM_GBSA) calculations were performed on the wild-type GSK3β-pseudosubstrate complex and three mutated systems (R4A, R6A, and S9A). Analyses of MD simulations and binding free energies revealed that the phosphorylation of Ser9 is the prerequisite for the autoinhibition of GSK3β, and both mutations of Arg4 and Arg6 to alanine markedly reduced the binding affinities of the mutated pseudosubstrate to the GSK3β catalytic domain, thereby disrupting the autoinhibition of the kinase. This study highlights the importance of Ser9, Arg6, and Arg4 in modulating the autoinhibition mechanism of GSK3β, contributing to a deeper understanding of GSK3β biology.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflicts of interest were reported by the authors.

Additional information

Funding

This work was supported by the Shangdong Provincial Natural Science Foundation (No. ZR201702200543).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.